

Bachelor's Programme Mathematics Master programme Mathematics

Module catalogue

modification date 19.11.2021

Faculty of Mathematics and Physics of the Leibniz University Hannover

Contact Student Deanery

Faculty of Mathematics and Physics

Appelstr. 11 A 30167 Hannover Tel.: 0511/ 762-4466

studiensekretariat@maphy.uni-hannover.de

Dean of Studies Office Prof. Dr. Detlev Ristau

studiendekan@maphy.uni-hannover.de

Course coordinator Axel Köhler

Dr. Katrin Radatz

Appelstr. 11 A 30167 Hannover Tel.: 0511/ 762-5450

sgk@maphy.uni-hannover.de

Preface

The module catalogue mathematics consist of two parts, the module descriptions and the appendix with the course descriptions. Given that different courses can be chosen for elective module, these will be described in more detail in the appendix. In those cases the information of the Course Overview and the frequency of the course are found at the courses and not at the modules.

Please note that this here is a compilation of the courses of the mathematics that are offered on a regular basis. In particular further courses of the university calender" can be assigned to "compulsory elective module and den Elective module.

The module catalogue should also be understood as addition to the Examination regulations. The recent version of our Examination regulations can be found under

http://www.uni-hannover.de/de/studium/studiengaenge/mathe/ordnungen/index.php

Table of Contents

CURRICULUM6

MODULES OF BACHELOR MATHEMATICS8

COMPULSORY MODULE BACHELOR8

Analysis 18

Analysis II9

Advanced Analytic Methods 10

Algebraic methods I11

Key competence: Computeralgebra12

Algebraic methods II13

Advanced algebraic methods 14

Practical methods of mathematics 15

Stochastic Methods 16

Proseminar 17

COMPULSORY ELECTIVE MODULES BACHELOR18

Basics Bachelor Algebra, number theory, discrete mathematics 18

Basics Bachelor Analysis 18

Basics Bachelor Geometry 19

Basics Bachelor Numerics 19

Basics Bachelor Stochastics20

Specialization Bachelor Algebra, number theory, discrete mathematics20

Specialization Bachelor Analysis21

Specialization Bachelor Geometry21

Specialization Bachelor Numerics 22

Specialization Bachelor Stochastics 22

SEMINAR23

BACHELORTHESIS24

MODULES OF MASTER MATHEMATICS25

Pure Mathematics 125

Pure Mathematics 225

Applied Mathematics 26

Applied Mathematics 226

Elective module 127

Elective module 227

Seminar28

Key Skills28

Masterthesis30

APPENDIX: LECTURES FOR BACHELOR AND MASTER DEGREE PROGRAMME:31

Curriculum Bachelor Course

	1. Semester	2. Semester	3. Semester	4. Semester	5. Semester	6. Semester	LP	
	Analysis I 10 LP, SL, PL	Analysis II 10 LP, SL, PL	(Analysis III 10 LP, SL, PL)	Probability and Statistics I 10 LP, SL, PL	Analysis III 10 LP, SL, PL			
Basics	Lineare Algebra I 10 LP, SL, PL	Lineare Algebra II 10 LP, SL, PL	Algebra I 10 LP, SL, PL					
	10 11, 31, 11	Algorithmic programming 4 LP, PL	Numerical Mathematics I 10 LP, SL, PL				84	
S		. 2.7.2	Seminar				5	
Key skills			5 LP, SL					
ľ			Proseminar				5	
Proseminar			5 LP, PL					
				courses in an	extent of 40 CP, 4	4xSL, 4xPL	40	
optional section								
Computer Science	Basics of theoretical Informatics 5 CP, SL, PL (also 3. Sem.)				Data Structur and Algorrithm 5 CP, SL, PL		10	
application subject	application subjects are: business administration, Geodesy and Geoinformatics, Informatics, Philosophy, Physics and Economics. Other subjects are possible upon request. 18 CP							
Seminar					Seminar 5 CP, PL		5	
						Bachelorthesis	13	
Bachelor thesis						13 CP		
	30/4	24/2	According to ind	lividual planning	variable		18	
Credit Points							0	

Modules of Bachelor Mathematics

Compulsory module Bachelor

	0201			
Frequency	Winter Semester, annually			
Responsible for Module	Elmar Schrohe, Institute of A	nalysis		
Type of Course (Semester Hours)	Lecture "Analysis I" (4 Semester Hours) Tutorial on "Analysis I" (2 Semester Hours)			
Major course assessment for acquisition of LP	Course Achievement: Tutorial Exam Performance: Exam			
Grade composition	Grade of exam			
Credit Points (ECTS): 10	Study in Class (h):	90	Independent Study (h):	210

Competences to acquire:

Competence in dealing with mathematical language. Basic understanding of the correct solution of mathematical problems by means of one-dimensional convergence considerations, differential and integral calculus. As a result of the exercise sessions, the students are familiar with mathematically exact formulations and conclusions in simple contexts and are able to present them.

Topics:

- Number systems; systematic introduction of real and complex numbers
- Sequences and series
- Convergence and continuity
- Differential calculus for functions of one variable
- Integral calculus for functions of one variable.
- Sequences of functions and power series

References

H. Amann & J. Escher: <i>Anglysis I</i> . Birkhäuser Verlag, 20		H. Amann &	J. Fscher:	Analysis I	Birkhäuser	Verlag.	2002
---	--	------------	------------	------------	------------	---------	------

- 0. Forster: *Analysis 1*, Vieweg+Teubner 2008
- K. Königsberger: Analysis 1, Springer Verlag 2004

Recommended prior knowledge:

School knowledge in Mathematics (gymnasiale Oberstufe)

Where applicable entrance requirements and/or restricted number of participants:

Applicability:

- Bachelor's Programme Mathematics
- Interdisciplinary Bachelor's Degree Programm

		Analysis II			0202
Frequency		Summer Semester, annu	ually	<u>.</u>	
Responsible for Module		Elmar Schrohe, Institute	of Analysis		
Course (Semester Hours)		Lecture "Analysis II" (4 S Tutorial on "Analysis II"			
Major course assessment for acquisition of LP		Course Achievement: Tu Exam Performance: Exa			
Grade composition		Grade of exam			
Credit Points (ECTS):	10	Study in Class (h):	90	Independent Study (h):	210

Basic understanding of the correct solution of mathematical and natural sciences tasks using multidimensional convergence considerations, differential and integral calculus. Secure mastery of the appropriate techniques and mathematical methods of proof. Teamwork by handling tasks in groups and discussing them in the exercise sessions.

Topics:

- Topological concepts such as metric and normed spaces, convergence, continuity, completeness, compactness;
- Differentiation of functions of several variables, total and partial differentiability, theorems on inverse functions and implicit functions, local extrema with and without constraints; vector fields and potentials; path integrals.
- Ordinary differential equations, existence, uniqueness, elementary methods of solution.

n	- 4	c_				_
ĸ	eı	e	re	n	ce	ς

- H. Amann & J. Escher: *Analysis II*, Birkhäuser Verlag, 1999
- 0. Forster: *Analysis 2*, Vieweg+Teubner, 2006
- J. Jost: Postmodern Analysis, Springer Verlag 2005
- K. Königsberger: *Analysis 2*, Springer Verlag 2004

Recommended prior knowledge:

- Linear Algebra I
- Analysis I

Where applicable entrance requirements and/or restricted number of participants:

Applicability:

- Bachelor's Programme Mathematics
- Interdisciplinary Bachelor's Degree Programm

Advanced Analytic Methods						
(For	tgesch	rittene analytische Met	noden)			
Frequency		Winter Semester, annua	lly			
Responsible for Module		Elmar Schrohe, Institute of Analysis				
Course (Semester Hours)		Lecture "Analysis III" (4 Semester Hours) Tutorial on "Analysis III" (2 Semester Hours)				
Major course assessment for acquisition of LP		Course Achievement: Tutorial Exam Performance: Exam or oral examination				
Grade composition		Grade of exam or oral ex	kamination			
Credit Points (ECTS):	10	Study in Class (h):	90	Independent Study (h):	210	
Competences to acquire:		1		•		

Deepened understanding of analytical methods, especially in the theory of measures and integration as well as vector analysis. Ability to independently elaborate more difficult mathematical arguments on topics of the lecture and their presentation in the exercise groups.

Topics:

Elements of Lebesgue's measure theory, multidimensional Lebesgue integral along with essential theorems (monotone and dominated convergence, Fubini's theorem, transformation rule); vector calculus; Gauss' and Stokes' theorems; manifolds.

_	_			
R۰	f۵	ro	nr	20

H. Amann & J. Escher: <i>Analysis III</i>
W. M. Boothby: An introduction to differentiable manifolds and Riemannian geometry, Academic Press
O. Forster: Analysis 3, Vieweg+Teubner, 2008
J. Jost: Postmodern Anglysis, Springer Verlag 2005

Recommended prior knowledge:

Analysis I + II

Where applicable entrance requirements and/or restricted number of participants:

Applicability:

Algebraic methods I (Algebraische Methoden I)					0101	
Frequency		Winter Semester, annually				
Responsible for Module		Klaus Hulek, Institute of Algebraic Geometry				
Course (Semester Hours)		Lecture "Lineare Algebra I" (4 Semester Hours) Tutorial on "Lineare Algebra I" (2 Semester Hours)				
Major course assessment for acquisition of LP		The Course Achievement is to be performed at the tutorial to "Lineare Algebra I". Exam Performance: Exam for "Lineare Algebra I"				
Grade composition		Grade of exam				
Credit Points (ECTS):	0	Study in Class (h): 90)	Independent Study (h)	: 210	

Basic understanding of the mathematical way of thinking and its application towards a variety of problems. Solid competence in handling systems of linear equations and the corresponding methods for solving them; sound knowledge of the underlying algebraic structures. Capability of expressing and presenting mathematical reasoning, and knowledge of adequate methods for this.

Topics:

Linear Algebra I:

- Basic properties of vector spaces (basis and dimension);
- linear maps and matrices;
- determinants;
- systems of linear equations and methods for solving them (Gauss algorithm);
- eigenvalues and eigenvectors;
- diagonalisation.

References

Lineare Algebra I: G. Fischer: Lineare Algebra

Recommended prior knowledge:

• School knowledge in Mathematics (gymnasiale Oberstufe)

Where applicable entrance requirements and/or restricted number of participants:

Applicability:

Ke					
Frequency		Winter Semester, irregu	lar		
Responsible for Module		Matthias Schütt, Institute of Algebraic Geometry			
Course (Semester Hours)		Practical course " Computerpraktikum" (3 Semester Hours)			
Major course assessment for acquisition of LP		Course Achievement of lecturer's choice			
Grade composition		oral or written exam			
Credit Points (ECTS):	5	Study in Class (h):	60	Independent Study (h): 90	

Experience in appropriate use of computer algebra systems as tools for solving problems from Analysis and Linear Algebra; in particular: choice of appropriate tools, knowing and avoiding potential mistakes, knowing the limits of such systems, use of visualization tools and programming of smaller functions/methods/procedures.

Topics:

- Basic knowledge on the functioning and use of computer algebra systems
- Selected applications from Linear Algebra, e.g. solving linear systems of equations, linear maps, change of basis
- Selected applications from Analysis, e.g. zeros, differentiation, visualization of graphs of functions
- Selected applications to topics known from school: gcd, conic sections
- Small projects, e.g. solutions of polynomial equations with visualization, Chinese Remainder Theorem

References:

T. Theobald, S. Iliman: Einführung in die Computerorientierte Mathematik, Springer Spektrum 2015

Recommended prior knowledge:

- Lineare Algebra, Analysis
- Some basic experience in the use of computers

Where applicable entrance requirements and/or restricted number of participants:

Applicability:

Algebraic methods II (Algebraische Methoden II)					0102	
Frequency		Summer Semester, annually				
Responsible for Module		Klaus Hulek, Institute of Algebraic Geometry				
Course (Semester Hours)	Lecture "Lineare Algebra II" (4 Semester Hours) Tutorial zu "Lineare Algebra II" (2 Semester Hours)					
Major course assessment for acquisition of LP		The Course Achievement is to be performed at the tutorial Exam Performance: Exam				
Grade composition		Grade of exam				
Credit Points (ECTS):	10	Study in Class (h):	90	Independent Study (h)	: 210	

Extended mathematical competences regarding methods for dealing with linear structures

And a deepened understanding for algebraic methods and their relationship to geometric questions. Extended capability of expressing and presenting mathematical reasoning. Competence in applying mathematical theories.

Topics:

- Euclidean and unitary vector spaces
- orthonormalization algorithm
- orthogonal and unitary endomorphisms
- quadrics
- Jordan normal form
- multilinear algebra

References:

G. Fischer: Lineare Algebra

Recommended prior knowledge:

Algebraic methods I

Where applicable entrance requirements and/or restricted number of participants:

Applicability:

Adva (Fortgeschri	0103					
Frequency	Winter Semester, annually	Winter Semester, annually				
Responsible for Module	Christine Bessenrodt, Institute of Algebra, Number theory and Discrete Mathematics					
Course (Semester Hours)	Lecture "Algebra I" (4 Semester Hours) Tutorial on "Algebra I" (2 Semester Hours)					
Major course assessment for acquisition of LP	The Course Achievement is to be performed at the Tutorial Exam Performance: Exam or oral examination					
Grade composition	Grade of exam or of oral examination					
Credit Points (ECTS): 10	Study in Class (h): 90 Independe	nt Study (h):	210			

Deepening of the understanding of algebraic structures; insight into the interconnectedness of mathematical fields via applications of algebraic methods in elementary number theory and towards the solution of classical geometric construction problems. Competence for independent development of advanced mathematical reasoning related to the topics of the course, and presentation in the problem classes.

Topics:

Arithmetic of the integers; groups (permutation groups, symmetry groups, group actions); rings (ideals, polynomial rings, divisibility, Euclidean rings, prime factorization); arithmetic modulo n (congruences, prime residue class groups); fields (algebraic field extensions, constructions with ruler and compass, cyclotomic fields, finite fields).

References:

G. Fischer: *Lehrbuch der Algebra*

E. Kunz: *Algebra*

J. Wolfart: Einführung in die Zahlentheorie und Algebra

Recommended prior knowledge:

Algebraic methods I + II

Where applicable entrance requirements and/or restricted number of participants:

Applicability:

• Bachelor's Programme Mathematics

As module "Algebra I" also for:

- Interdisciplinary Bachelor's Degree Programm
- Master's Teacher Training Course for Grammar Schools (Zweitfach)

Practical methods of mathematics					0301
(1)	Praktisch	e Verfahren der Mathem	atik)		
Frequency		Winter Semester and Sum	mer Semes	ter, annually	
Responsible for Module		Marc Steinbach, Institute	of Applied	Mathematics	
Course (Semester Hours)		Lecture "Numerische Mathematik I" (4 Semester Hours) Tutorial on "Numerische Mathematik I" (2 Semester Hours) Lecture "Algorithmisches Programmieren" (2 Semester Hours) Tutorial on "Algorithmisches Programmieren" (1 Semester Hours)			
Major course assessment for acquisition of LP		Course Achievement: the tutorial on "Numerische Mathematik I" Exam Performance: written exam of "Numerische Mathematik I" and practical programming exam of "Algorithmisches Programmieren"			
Grade composition		Weighted average of grades in written exam (weight 10) and in practical programming exam (weight 4)			in practical
Credit Points (ECTS):	14	Study in Class (h): 210 Independent Study (h): 210			

"Numerische Mathematik I": Knowledge of numerical methods for approximatively solving basic mathematical problems. Assessing the suitability of different methods. Being aware of areas of application and limitations of numerical methods.

"Algorithmic programming": Capability of using programming languages in modeling and in solving problems from various fields of mathematics and its application areas.

Topics:

Numerische Mathematik I: Interpolation of functions by polynomials and splines. Quadrature formulae for numerical integration. Direct methods for linear systems of equations: LU and Cholesky decomposition. Iterative methods for linear systems of equations: Jacobi, Gauss-Seidel, CG. Newton's method for systems of nonlinear equations. Condition of mathematical problems and stability of numerical algorithms.

Algorithmic programming:

Implementing and testing basic numerical algorithms in a higher programming language.

References:

- P. Deuflhard, A. Hohmann: *Numerische Mathematik I*. De Gruyter.
- A. Quarteroni, R. Sacco, F. Saleri: *Numerische Mathematik I und II*, Springer-Verlag.

Recommended prior knowledge:

- Lineare Algebra I (and II) and Analysis I (and II)
- Algorithmisches Programmieren

Where applicable entrance requirements and/or restricted number of participants:

Applicability:

Stochastic Methods (Stochastische Methoden)					0401
Frequency		Summer Semester, Ann	Summer Semester, Annually		
Responsible for Module		Sebastian Riedel, Institute of Analysis			
Course (Semester Hours) Lecture "Mathematische Stochastik I" (4 Semester Hours) Tutorial "Mathematische Stochastik I" (2 Semester Hours)					
Major course assessment for acquisition of LP		Course Achievement: Tutorial Exam Performance: Exam			
Grade composition		Grade of exam			
Credit Points (ECTS): 1	10	Study in Class (h):	90	Independent Study (h)	: 210

Basic knowledge of combinatorics, probability, and statistics. Students should understand elementary stochastic models and techniques, and be able to formulate, analyse and solve simple problems involving randomness.

Topics:

The lecture provides an introduction to probability and statistics.

Topics include:

- Combinatorics
- Axioms of probability theory
- Conditional Probability and independence
- Random variables and their distributions
- Expectation and variance
- Modes of convergence
- · Limit theorems for sums of independent random variables
- Elementary statistics

References:

- Georgii, H.: *Stochastik*, de Gruyter
- Jacod, J. & Protter. P: *Probability Essentials*, Springer
- Krengel, U.: Einführung in die Wahrscheinlichkeitstheorie und Statistik

Recommended prior knowledge:

- Lineare Algebra I (and II)
- Analysis I (and II)

Where applicable entrance requirements and/or restricted number of participants:

Applicability:

- Bachelor's Programme Mathematics
- Interdisciplinary Bachelor's Degree Programm (Erstfach)
- Master's Teacher Training Course for Grammar Schools (Zweitfach)

Proseminar					0001
Frequency Winter Semester and Summer Semester, annual					
Responsible for Module		Dean of Studies Office			
Course (Semester Hours) Proseminar (2 Semester Hours)					
Major course assessment for acquisition of LP Seminar performance with written composition					
Grade composition		Grade of seminar performance			
Credit Points (ECTS):	5	Study in Class (h): 30 Independent Study (h): 120			

Written description of a concrete mathematical topic, its surrounding and if so its historic background. Oral presentation of results. Ability to discuss with other participants. Use of suitable media (black board, PC, projector) for preparation and presentation.

Topics:

variable, depends on topic of proseminar.

References:

variable, depends on topic of proseminar.

Recommended prior knowledge:

Analytic and algebraic methods

Where applicable entrance requirements and/or restricted number of participants:

Applicability:

Compulsory elective modules Bachelor

Basics Bachelor Algebra, number theory, discrete mathematics (Grundlagen Bachelor Algebra, Zahlentheorie, Diskrete Mathematik)				
Responsible for Module	Christine Bessenrodt, Institute of Algebra, Number Theory and Discrete Mathematics			
Course	Lecture with tutorial (4+2): Algebra II or Discrete mathematics (see appendix) Alternative courses can be assigned to this module in the university calendar.			
Major course assessment for acquisition of LP	Course Achievement: at university lecturer's option Exam Performance: oral examination or Exam			
Credit Points (ECTS): 1 0	Study in Class (h): 90 Independent Study (h): 210			

Competences to acquire:

Extended knowledge in an area of algebra or basic knowledge in number theory; understanding of relational and operational structures and their algebraic treatment.

Knowledge of basic functions in combinatorics, including methods and applications. Solid grasp of mathmatical argumentation and methodology. Students are able to solve concrete problems using suitable methods.

Where applicable entrance requirements and/or restricted number of participants:

Applicability:

Bachelor's Programme Mathematics

	Basics Bachelor Analysis (Grundlagen Bachelor Analysis)	0204	
Responsible for Module	Wolfram Bauer, Institute of Analysis		
Course	Lecture with tutorial (4+2): Complex analysis or Manifolds (see appe Alternative courses can be assigned to this module in the university c		
Major course assessment for acquisition of LP	Course Achievement: at university lecturer's option Exam Performance: oral examination or Exam		
Credit Points (ECTS): 10	Study in Class (h): 90 Independent Study (h):	210	

Competences to acquire:

Deepened acquisition of analytic thinking based on topics in complex analysis, topology and functional analysis. Sound knowledge and reliable command of mathematical thinking and argumentation. Students gain the ability to solve concrete tasks by applying suitable methods.

Where applicable entrance requirements and/or restricted number of participants:

Applicability:

Basics Bachelor Geometry (Grundlagen Bachelor Geometrie)				
Responsible for Module	Matthias Schütt, Institute of Algebraic Geometry			
Course	Lecture with tutorial (4+2): Algebra II or Manifolds (see appendix) Alternative courses can be assigned to this module in the university calendar.			
Major course assessment for acquisition of LP	Course Achievement of lecturer's choice Examination: oral or written exam			
Credit Points (ECTS): 10	Study in Class (h): 90 Independent Study (h): 210			

Understanding of geometric constructions, structures in space and the interplay of algebraic, geometric, analytic, and topological methods.

Solid command of mathematical reasoning. Students are able to solve explicit problems using appropriate methods.

Where applicable entrance requirements and/or restricted number of participants:

Applicability:

Bachelor's Programme Mathematics

Basics Bachelor Numerics (Grundlagen Bachelor Numerik)					
Responsible for Module	Sven Beuchler, Institute o	Sven Beuchler, Institute of Applied Mathematics			
Course	Lecture and tutorial (4+2): Numerical Mathematics II (see appendix) Alternative courses can be assigned to this module in the university calendar.				
Major course assessment for acquisition of LP		Course Achievement: at the instructor's option Exam Performance: oral or written exam			
Credit Points (ECTS): 10	Study in Class (h):	Study in Class (h): 90 Independent Study (h): 210			

Competences to acquire:

Knowledge of numerical methods for approximately solving demanding mathematical problems. Assessing the suitability of different methods depending on the circumstances and on the limitations of numerical methods. Proficiency in the mathematical way of thinking and argueing. Students are capable of solving concrete problems by applying suitable methods.

Where applicable entrance requirements and/or restricted number of participants:

Applicability:

Basics Bachelor Stochastics (Grundlagen Bachelor Stochastik)				
Responsible for Module	Sebastian Riedel, Institute of Analysis			
Course	Lecture with tutorial (4+2): Probability and Statistics II (see appendix) Alternative courses can be assigned for this module in university calendary			
Major course assessment for acquisition of LP	Course Achievement: at university lecturer's option Exam Performance: oral examination or Exam			
Credit Points (ECTS): 10	Study in Class (h): 90 Independent Study (h): 210			

Probablility, Statististics and their Applications. Students understand key mathematical concepts and arguments, and can solve exercises using appropriate methods.

Where applicable entrance requirements and/or restricted number of participants:

Applicability:

• Bachelor's Programme Mathematics

Specialization Bachelor Algebra, number theory, discrete mathematics (Spezialisierung Bachelor Algebra, Zahlentheorie, Diskrete Mathematik)				
Responsible for Module	Ulrich Derenthal, Institute of Algebra, Number Theory and Discrete Mathematics			
Course	Lectures that belong to this module can be found in appendix. Further courses can be assigned for this module in the university calendar.			
Major course assessment for acquisition of LP	Course Achievement: at university lecturer's option Exam Performance: oral examination			
Credit Points (ECTS): 10	Study in Class (h): 90 Independent Study (h): 210			

Competences to acquire:

Advanced understanding of algebraic arguments and methods, good knowledge of two areas of algebra or number theory. Advanced knowledge of the theory of relational and operational structures and their applications, for instance in coding theory, applied algebra or algebraic combinatorics.

The students have a good grasp of the logical structures of the subject; they are able to derive the key results and produce the most important examples. They can analyse problems from the area and identify as well as apply methods suitable for solving them. The students are capable of explaining and justifying their approach.

Where applicable entrance requirements and/or restricted number of participants:

Applicability:

Specialization Bachelor Analysis (Spezialisierung Bachelor Analysis)				
Responsible for Module	Wolfram Bauer, Institut für Analysis			
Course	Lectures that belong to this module can be found in appendix. Further courses can be assigned for this module in the university calendar.			
Major course assessment for acquisition of LP	Course Achievement: at university lecturer's option Exam Performance: oral examination			
Credit Points (ECTS): 10	Study in Class (h): 90 Independent Study (h): 210			

Deepened understanding of general analytic, topological and complex analytical methods. Knowledge of qualitative methods for the investigation and solution of ordinary and partial differential equations. The students understand the logical structure of the area, they are able to deduce the most important theorems and they are aware of prominent examples. Students are capable to analyze problems of the area and to identify and apply suitable methods for their solution. They can justify and clearly explain their approach.

Where applicable entrance requirements and/or restricted number of participants:

Applicability:

• Bachelor's Programme Mathematics

Specialization Bachelor Geometry (Spezialisierung Bachelor Geometrie)				
Responsible for Module	Knut Smoczyk, Institute of Differential Geometry			
Course	Lectures that belong to this module can be found in appendix. Further courses can be assigned for this module in the university calendar			
Major course assessment for acquisition of LP	Course Achievement: at university lecturer's option Exam Performance: oral examination			
Credit Points (ECTS): 10	Study in Class (h): 90 Independent Study (h): 210			

Competences to acquire:

In depth knowledge of the relations between algebraic, geometric, analytic and topological structures connecting geometric intuition and axiomatic foundations of the field. Students are familiar with the logical structure of the field, are able to deduce the most important statements and know illustrating examples. Students are able to analyze problems in the subject area and to indentify and apply appropriate methods to tackle given problems. The know how to justify their approach and explain it clearly.

Where applicable entrance requirements and/or restricted number of participants:

Applicability:

Specialization Bachelor Numerics (Spezialisierung Bachelor Numerik)				
Responsible for Module	Sven Beuchler, Institute of Applied Mathematics			
Course	Lectures in the appendix that belong to this module. Further courses can be assigned to this module in the university calenda			
Major course assessment for acquisition of LP	Course Achievement: at the instructor's option Exam Performance: oral exam			
Credit Points (ECTS): 10	Study in Class (h): 90 Independent Study (h): 210			

Deepened knowledge of numerical methods for approximately solving concrete mathematical problems. Students have comprehended the logical structure of the area. They are capable of deriving the most important facts and know prominent examples. Students are capable of analyzing problems in the area and to identify and apply suitable solution methods. They can substantiate their approach and explain it comprehensively.

Where applicable entrance requirements and/or restricted number of participants:

Applicability:

• Bachelor programme Mathematik

Specialization Bachelor Stochastics (Spezialisierung Bachelor Stochastik)					0403
Responsible for Module		Sebastian Riedel, Institu	te of Analys	is	
Course		Lectures that belong to this module can be found in appendix. Further courses can be assigned for this module In the university calendar.			
Major course assessment for acquisition of LP		Course Achievement: at university lecturer's option Exam Performance: oral examination			
Credit Points (ECTS):	10	Study in Class (h):	90	Independent Study (h):	210

Competences to acquire:

Extended knowledge of probability, statistics and their applications. Students understand the key concepts and methods of the field, are able to prove the main results and know important examples and applications. Students can analyse problems, can identify suitable methods for their solution and are able to apply them appropriately. They can justify their solutions strategies and explain them clearly.

Where applicable entrance requirements and/or restricted number of participants:

Applicability:

Seminar			0950	
Frequency		Start all year long possible		
Responsible for Module		Institutes of mathematics		
Course (Semester Hours)		Seminar (2 SH)		
Major course assessment for acquisition of LP		Presentation with written elaboration		
Grade composition		Grade of seminar participation		
Credit Points (ECTS):	5	Study in Class (h) 30	Independent Study	(h): 120

Ability of familiarization in a mathematical topic under guidance. Knowledge acquisition from partly English speaking books und professional journals. Academic writing skills. Presentation skills and use of media. Ability to discuss mathematical topics.

Topics:

Introduction to academic research and writing

- focused academic topic of mathematics after agreement with supervising tutor,
- use of specialist literature/ database;
- mathematic inscribing;
- presentation skills and use of media;

With this seminar the introduction of the bachelor thesis is getting prepared.

References variable, depends on topics of Seminars.

Recommended prior knowledge: variable, depends on topics of Seminars.

In-depth specialisation for a mathematical topic as part of a seminar

Where applicable entrance requirements and/or restricted number of participants:

Applicability:

• Bachelor programme Mathematik

		Bachelorthesis	0901
Frequency		Start all year long possible	•
Responsible for Module		Dean of Studies Office	
Course (Semester Hours)		Project "Bachelorarbeit" (13 LP)	
Major course assessment for acquisition of LP		Exam Performance: Bachelorthesis	
Grade composition		Grade of Bachelorthesis	
Credit Points (ECTS):	13	Study in Class (h) & Independent Study (h): 390	

Ability to independently work in a research topic. Knowledge acquisition from partly english speaking books and professional journals. Ability for realistic planning, timing and for conducting an academic project with the help of academic methods under guidance. Academic writing skills. Ability to discuss own thesis and self-reflection skills.

Topics:

Introduction into academic research, independent projektwork under guidance, academic writing

- a focused academic topic of mathematics after agreement with supervising tutor,
- use of specialist literature/Database;
- mathematic inscribing;
- Presentation skills and use of media;
- Planning of Bachelorthesis.

References

Recommended prior knowledge: Deepening of a mathematic topic in context of a seminar

Where applicable entrance requirements and/or restricted number of participants: minimum of 120 LP

Applicability:

• Bachelor's Programme Mathematics

Examination procedure:

The topic of the bachelor thesis will be fixed by the examiner after consultation with examination candidate. The Issuing is to be put on record and the examination candidate as well as the Studiendekanat must be informed in written form. With the Issuing of the topic the examiner will be booked. During the making of thesis the student will be looked after by the examiner.

Modules of Master Mathematics

		Pure Mathematics 1 (Reine Mathematik 1)			0004
Responsible for Module		Matthias Schütt, Institut	te of Algebra	aic Geometry	
Course (Semester Hours)		A lecture with tutorial (4	1 + 2)		
Major course assessment for acquisition of LP		Course Achievement of lecturer's choice Examination: oral or written exam			
Grade composition		Grade of oral exam or written exam			
Credit Points (ECTS):	10	Study in Class (h):	90	Independent Study (h):	210

Competences to acquire:

The students widen their mathematic knowledge. They gain an insight into a chosen field of mathematics. They aquire the skill to deal competently with problems of that particular field.

Where applicable entrance requirements and/or restricted number of participants:

Applicability:

• Master programme mathematics

		Pure Mathematics 2 (Reine Mathematik 2)			0005
Responsible for Module		Matthias Schütt, Institut	e of Algebra	aic Geometry	
Course (Semester Hours)		A lecture with tutorial (4	+ 2)		
Major course assessment for acquisition of LP		Course Achievement of lecturer's choice Examination: oral or written exam			
Grade composition		Grade of oral exam or written exam			
Credit Points (ECTS):	10	Study in Class (h):	90	Independent Study (h):	210

Competences to acquire:

The students widen their mathematic knowledge. They gain an insight into a chosen field of mathematics. They aquire the skill to deal competently with problems of that particular field.

Where applicable entrance requirements and/or restricted number of participants:

Applicability:

Master programme mathematics

Applied Mathematics (Angewandte Mathematik)					0056
Responsible for Module		Christoph Walker, Instit	ute of Applie	ed Mathematics	
Course (Semester Hours)		A lecture with tutorial (4 + 2)		
Major course assessment for acquisition of LP	Course Achievement: at Exam Performance: oral	•	•		
Grade composition		Grade of oral exam or written exam			
Credit Points (ECTS):	10	Study in Class (h):	90	Independent Study (h):	210

The students widen their mathematic knowledge. They gain an insight into a chosen field of mathematics. They aquire the skill to deal competently with problems of that particular field.

Where applicable entrance requirements and/or restricted number of participants:

Applicability:

• Master programme mathematics

Applied Mathematics 2 (Angewandte Mathematik 2)					0057
Responsible for Module		Christoph Walker, Institu	te of Applie	ed Mathematics	
Course (Semester Hours)		A lecture with tutorial (4	+ 2)		
Major course assessment for acquisition of LP		Course Achievement: at university lecturer's option Exam Performance: oral examination or Exam			
Grade composition		Grade of oral exam or written exam			
Credit Points (ECTS):	10	Study in Class (h):	90	Independent Study (h):	210

Competences to acquire:

The students widen their mathematic knowledge. They gain an insight into a chosen field of mathematics. They aquire the skill to deal competently with problems of that particular field.

Where applicable entrance requirements and/or restricted number of participants:

Applicability:

• Master programme mathematics

Elective module 1					0004
Responsible for Module		Dean of Studies Office			
Course (Semester Hours)		A lecture with tutorial (4 + 2)		
Major course assessment for acquisition of LP	, ,				
Grade composition		Grade of oral exam or written exam			
Credit Points (ECTS):	10	Study in Class (h):	90	Independent Study (h):	210

The students widen their mathematic knowledge. They gain an insight into a chosen field of mathematics. They aquire the skill to deal competently with problems of that particular field.

Where applicable entrance requirements and/or restricted number of participants:

Applicability:

• Master programme mathematics

Elective module 2					0004
Responsible for Module		Dean of Studies Office			
Course (Semester Hours)		A lecture with tutorial (4	+ 2)		
Major course assessment for acquisition of LP		Course Achievement: at university lecturer's option Exam Performance: oral examination or Exam			
Grade composition		Grade of oral exam or written exam			
Credit Points (ECTS):	10	Study in Class (h):	90	Independent Study (h):	210

Competences to acquire:

The students widen their mathematic knowledge. They gain an insight into a chosen field of mathematics. They aquire the skill to deal competently with problems of that particular field.

Where applicable entrance requirements and/or restricted number of participants:

Applicability:

Master programme mathematics

Seminar					0060
Frequency		Every semester			
Responsible for Module		Dean of Studies Office			
Course (Semester Hours)		Seminar (2 Semester Ho	urs)		
Major course assessment for acquisition of LP		Exam Performance: Seminar performance			
Grade composition		Grade of Seminar performance			
Credit Points (ECTS):	5	Study in Class (h):	30	Independent Study (h):	30

The students have the ability to independently work in a research topic. This contains especially the independent research of specialist literature for a given topic and the knowledge acquisition from specialised books and articels. Students can recognize connections in regard to content. They acquire knowledge of the English language to be able to study relevant specialist literature. The students are in the position to structure a complex topic of the modern mathematic in a suitable way and to understandable recite. They are capable of having an academic discussion and of self-reflecting.

A continuous participation is required to achieve the Learning Outcomes of the seminar.

Topics:

Depends on lecture. Current topics of different mathematic fields.

Where applicable entrance requirements and/or restricted number of participants:

Applicability:

• Master programme mathematics

Key Skills (Schlüsselkompetenzen)					0061
Frequency		Every semester			
Responsible for Module		Dean of Studies Office			
Course (Semester Hours)		Two seminars (each 2 Se	mester Hou	irs)	
Major course assessment for acquisition of LP		Exam Performance: Seminar performance in every seminar			
Grade composition		Overall average grade of both seminar performances			
Credit Points (ECTS):	10	Study in Class (h):	60	Independent Study (h):	240

Competences to acquire:

The students have the ability to independently work in a research topic. This contains especially the independent research of specialist literature for a given topic and the knowledge acquisition from specialised books and articels. Students can recognize connections in regard to content. They acquire knowledge of the English language to be able to study relevant specialist literature. The students are in the position to structure a complex topic of the modern mathematic in a suitable way and to understandable recite. They are capable of having an academic discussion and of self-reflecting.

Topics:

Depends on lecture. Current topics of different mathematic fields.

Where applicable entrance requirements and/or restricted number of participants:

Applicability:

• Master programme mathematics

Masterthesis (Masterarbeit)			
Frequency	Start all year long possible		
Responsible for Module	Dean of Studies Office		
Course (Semester Hours)	Projekt "Masterarbeit"		
Major course assessment for acquisition of LP	Course Achievement: Presentation Exam Performance: Masterthesis		
Grade composition	Grade of master thesis (Overall average grade of the two examiner opinions)		
Credit Points (ECTS): 30	Arbeitsaufwand(h): 900		

The students can independently work in a research. They are able to structure, to prepare and to undertake scientific projects under guidance. They procure an overview over the recent literature and they analyse and solve complex problems. The students can hold critical discussions about their own and external research results and interact constructive with questions and critics. They have the competence to pose self-dependent mathematical facts.

Topics:

Introduction into academic research, independent projektwork under guidance, academic writing.

- a current academic topic of mathematics after agreement with supervising tutor,
- mathematic inscribing;
- current specialist literature/Database .

Where applicable entrance requirements and/or restricted number of participants: minimum 75 LP, Completion of the module key skills

Applicability:

• Master programme mathematics

Examination procedure:

The topic of the master thesis will be fixed by the first examiner after consultation with examination candidate. The Issuing is to be put on record and the examination candidate as well as the Studiendekanat must be informed in written form. With the Issuing of the topic the first examiner and second examiner will be booked. During the making of thesis the student will be looked after by the first examiner.

Appendix: Lectures for Bachelor and Master degree programme:

Below lectures will be described that can be taken for compulsory elective modules of the Bachelorstudy and for Mastermodules.

The Lectures in **Appendix A** can be taken for the Basics modules Bachelor and in parts for the Specialization modules Bachelor. The lectures in **Appendix B** can be taken for the Mastermodules and in parts for the Specialization modules Bachelor.

The letters **P** and **A** in the upper right-hand corner of the lecture descriptions define the assignment of the lecture to the Pure (German: Reinen) mathematics or Applied (German: Angewandten) mathematics.

Those *** seen at the Semesterweekhours (Short: Semester Hours, in german: Semesterwochenstundenzahl) and Credit Points mean that the course is offered depending on overall supply of that particular Semester as lecture with 4+2 Semester Hours/ 10 CP or with 2+1 Semester Hours/ 5 CP or if applicable as seminar.

More detailed information can be found in the university calendar.

Those used abbreviation mean:

IAG "Institute of Algebraic Geometry";

IAZD "Institut für Algebra, Number Theory and Discrete Mathematics";

IDG "Institute of Differential Geometry";

IfAM "Institute of Applied Mathematics";

IfMS "Institute of Probaility and Statistics".

A. LECTURES FOR BASICS MODULES BACHELOR35

Algebra II35

Discrete Mathematics 35

Manifolds36

Complex Analysis 38

Numerical Mathematics II38

Probability and Statistics II39

Algebraic Number Theory I40

B. LECTURES FOR MASTER MODULES41

B.1 ALGEBRA, NUMBER THEORY AND DISCRETE MATHEMATICS:41

Algebraic Combinatorics 41

Algebraic Number Theory II41

Algebras and their representations 42

Analytic Number Theory 142

Analytic Number Theory II43

Arithmetic Geometry 144

Arithmetic Geometry II45

Representation theory45

Representation theory of symmetric groups46

Enumerative combinatorics46

Groups and their representations47

Homological Algebra47

Topology48

B.2 ALGEBRAIC GEOMETRY49

Algebraic Surfaces 49

Algebraic Geometry 149

Algebraic Geometry II50

Algebraic topology50

Algorithmic Commutative Algebra51

Coding theory51

Plane Algebraic Curves 52

Lattices and Codes52

Moduli Spaces53

Singularity53

B.3 ANALYSIS54

Functional Analysis 54

Index theory54

Pseudodifferential Operators 56

B.4 APPLIED ANALYSIS57

Semigroups and Evolution Equations 57

Interpolation Theory and Applications 57

Nonlinear Functional Analysis 58

Partial Differential Equations 58

Nonlinear Partial Differential Equations 59

Qualitative Theory of Ordinary Differential Equations 59

B.5 NUMERICAL MATHEMATICS AND OPTIMIZATION 60

Intoduction to Adaptive Finite Element Method 60

hp-Finite Element Methods 60

Linear optimization61

Multigrid and split and merge technique61

Nonlinear optimization I62

Nonlinear optimization II62

Numerics for contact problems63

Numerics for Partial Differential Equations 63

Numerical Methods in Continuum Mechanics64

Numerical Methods for coupled and nonlinear Problems64

Numerical methods for ordinary differential equations 65

Optimization of Partial Differential Equations 65

Scientific Computing 66

Discontinuous Galerkin Methods66

B.6 DIFFERENTIAL GEOMETRY67

Gauge theory67

Classic Differential Geometry 70

Riemannian geometry71

Differential topology74

B.7 MATHEMATICAL STOCHASTICS75

Asymptotic Statistics 75

Financial Mathematics 175

Financial Mathematics 276

Nonparametric Statistics 76

Actuarial Mathematics 177

Actuarial Mathematics 278

Game Theory 79

Statistical Decision Theory and Sequential Procedures 79

Statistics80

Stochastic Analysis80

Stochastic Simulation81

Time Series Analysis81

Quantitative Risk Management82

A. Lectures for basics modules Bachelor

Algebra II					
Type of course	Semester Hours	Credit Points (ECTS):	Responsibility		
Bachelor	4+2	10	IAZD and IAG		
Frequency: annual, Summer Semester					

Topics:

- Field theory (structure of finitely generated field extensions), Galois theory, solvability of algebraic equations
- Modules and algebras (Noetherian rings, Hilbert's Basis Theorem, integral ring extensions, modules over principal ideal rings, Artin-Wedderburn Theorem, tensor products)

References

J.C. Jantzen, J. Schwermer: *Algebra*, Springer 2006

Recommended prior knowledge: Algebra I

Module affiliation:

- Basics Bachelor Algebra, Number theory, Discrete mathematics
- Basics Bachelor Geometry
- Specialization Bachelor Algebra, Number theory, Discrete mathematics
- Specialization Bachelor Geometry

Discrete Mathematics					Р	
(Diskrete Mathematik)						
Type of course	Semester Hours	Credit Points (ECTS):	Responsibility			
Bachelor	4+2	10	IAZD			
Frequency: annual Summer Semester						

Frequency: annual, Summer Semester

Topics:

- Enumerations and Combinatorics
- Generating functions
- Theory of graphs
- Error-correcting codes
- Algebraic combinatorics or oriented matroids

References

- M. Aigner: *Diskrete Mathematik*
- Harary: *Graphentheorie*
- A. Björner et al.: *Oriented Matroids*

Recommended prior knowledge: Algebra I

Module affiliation:

Basics Bachelor Algebra, Number theory, Discrete mathematics

Manifolds				
(Mannigfaltigkeiten)				
Type of course	Semester Hours	Credit Points (ECTS):	Responsibility	
Bachelor	4+2	10	IDG	

Frequency: annually, Summer Semester

Topics:

- Topological and differentiable manifolds
- Tangent and cotangent spaces and bundles
- Differential forms, vector fields and flows
- Lie derivatives, Lie groups and algebras
- Integration on manifolds, theorems of Frobenius and Stokes
- Vector bundles and tensor fields
- Connections on vector bundles, parallel transport, covariant derivatives and holonomy

References:

- Boothby, William M., *An introduction to differentiable manifolds and Riemannian geometry*, Academic Press, Inc., Orlando, FL, 1986
- Milnor: Topology from the Differentiable Viewpoint, Princeton University Press
- Lee, John M., Introduction to smooth manifolds, Graduate Texts in Mathematics 218, Springer-Verlag, New York
- Warner, Frank W., Foundations of differentiable manifolds and Lie groups, Graduate Texts in Mathematics 94, Springer-Verlag New York-Berlin

Recommended prior knowledge: Analysis III

Module affiliation:

- Basic Bachelor Analysis
- Basic Bachelor Geometry
- Specialization Bachelor Analysis
- Specialization Bachelor Geometry

Classic Differential Geometry			P	
(Klassische Differentialgeometrie)				
Type of course Semester Hours Credit Points (ECTS): Responsibility				
Bachelor and Master 4+2 10 IDG				
		er Hours Credit Points (ECTS):	er Hours Credit Points (ECTS): Responsibility	

Frequency: annual, Winter Semester

Topics:

- Regular submanifolds of arbitrary codimension
- Tangent spaces
- First fundamental form, length of a rectifiable curve, induced measure on regular submanifolds
- Second fundamental form, Gauß map, Weingarten map, principal curvatures, mean curvature,
 Gauß curvature
- Covariant derivatives on tangent and normal bundles
- Inner geometry
- Equations of Gauß (Theorema Egregium), Codazzi—Mainardi and Ricci
- Gobal theory of curves and surfaces: isoperimetric inequality, Umlaufsatz, theorems of Fenchel and Gauß-Bonnet

References:

- do Carmo, Manfredo P., *Differentialgeometrie von Kurven und Flächen*, Vieweg Studium: Aufbaukurs Mathematik, 1983
- Kühnel, Wolfgang: *Differentialgeometrie: Kurven Flächen Mannigfaltigkeiten*, Aufbaukurs Mathematik, Springer Spektrum

Recommended prior knowledge: Analysis I-II, Linear Algebra I

- Basic Bachelor Analysis
- Basic Bachelor Geometry
- Specialization Bachelor Analysis
- Specialization Bachelor Geometry

Complex Analysis (Funktionentheorie)				Р
Type of course Semester Hours Credit Points (ECTS): Responsibility			•	
Bachelor 4+2 10 Institute for Analysis			S	

Frequency: annual, Summer Semester

Topics:

- Holomorphic und meromorphic functions
- Cauchy's integral theorem
- Local mapping properties of holomorphic functions
- Residue theorem
- Riemann mapping theorem

References:

- L. Ahlfors: Complex Analysis, McGraw-Hill, New York, 1978.
- J. Conway: Functions of one Complex Variable, Springer-Verlag, New York 1995.
- W. Rudin: Real and Complex Analysis, McGraw-Hill, New York, 1987.

Recommended prior knowledge: Analysis I-III

Module affiliation:

- Basics Bachelor Analysis
- Specialization Bachelor Analysis

Numerical Mathematics II			Α	
(Numerische Mathematik II)				
Type of course Semester Hours Credit Points (ECTS): Responsibility			Responsibility	
Bachelor and Master				

Frequency: annually, Summer Semester

Topics:

Numerical methods for eigenvalue problems: inverse Iteration, QR algorithm, Lanczos method. Initial value problems for ordinary differential equations: Runge-Kutta methods, adaptive stepsize control, stiff differential equations.

References:

- P. Deuflhard, V. Bornemann: *Scientific Computing with Ordinary Differential Equations*, Springer-Verlag.
- A. Quarteroni, R. Sacco, F. Saleri: *NumerischeMathematik I and II*, Springer-Verlag.

Recommended prior knowledge: Numerical Mathematics I

Module affiliation:

- Basics Bachelor Numerics
- Specialization_Bachelor Numerics

For an in-depth module it can be combined with:

• all lectures for applied mathematics

or alternative lectures in agreement with examiner

Probability and Statistics II (Mathematische Stochastik II)			A	
Type of course	Type of course Semester Hours Credit Points (ECTS): Responsibility			
Bachelor	4+2	10	Sebastian Riedel,	
			Institute of Analysis	,

Frequency: annually, Winter Semester

Topics:

- Measure Thoery
- Limit Theorems
- Martingales
- Statistics: Estimators, Confidence Sets, Statistical Tests

References:

- P. Billingsley: *Probability and Measure*, Wiley, New York, 1995.
- L. Rüschendorf: Mathematische Statistik, Springer, Berlin, 2014.
- Georgii, H.: *Stochastik*, de Gruyter
- Jacod, J. & Protter. P: Probability Essentials, Springer

Recommended prior knowledge: Probability and Statistics I

- Basics Bachelor Stochastics
- Specialization Bachelor Stochastics

Algebraic Number Theory I				Р
(Algebraische Zahlentheorie I)				
Type of course Semester Hours Credit Points (ECTS): Responsibility				
Bachelor and Master 4+2 10 IAZD				
Frequency: every other year W	inter Semester	•	•	

Introduction to algebraic number theory, detailed treatment of the following topics:

- arithmetic of algebraic number fields
- zeta- and L-series

References

☐ Neukirch: *Algebraische Zahlentheorie*

Recommended prior knowledge: Algebra II

Module affiliation:

- Specialization Bachelor Algebra, Number theory, Discrete mathematics
- Elective module master Mathematics

B. Lectures for master modules

B.1 Algebra, Number theory and Discrete mathematics:

Algebraic Combinatorics				P
(Algebraische Kombinatorik)				
Type of course Semester Hours Credit Points (ECTS): Responsibility				
Bachelor and Master 4+2 10 IAZD				
Frequency: irregular	·	•	•	

Topics:

In Algebraic Combinatorics, on the one hand methods from algebra, in particular group theory and representation theory, are applied towards combinatorial problems, on the other hand, combinatorial approaches are fruitfully employed in algebraic contexts. Topics in this area of interaction are in particular concerned with:

- Young tableaux and partitions
- symmetric functions
- weighted enumeration under group actions
- symmetric groups

References:

- W. Fulton: Young Tableaux
- R. Stanley: Enumerative Combinatorics II
- R. Stanley: *Algebraic Combinatorics*

Recommended prior knowledge: Algebra I, Basics of combinatorics

Module affiliation:

- Specialization Bachelor Algebra, Number theory, Discrete mathematics
- Elective Modules of Master Mathematics

For an in-depth module it can be combined with e.g.: Enumerative combinatorics_Representation theory

Algebraic Number Theory II				
(Algebraische Zahlentheorie II)				
Type of course	Type of course Semester Hours Credit Points (ECTS): Responsibility			
Bachelor and Master 4+2 10 IAZD				
Frequency: every other year, Summer Semester				

Advanced treatment of algebraic number theory via one or more of the following topics:

- p-adic number fields
- class field theory
- algorithmic problems

References

Neukirch: *Algebraische Zahlentheorie*

Cohen: Topics in Computational Algebraic Number Theory

Recommended prior knowledge: Algebraic Number Theory I

Module affiliation:

- Specialization Bachelor Algebra, Number theory, Discrete mathematics
- Elective module master Mathematics

Algebras and their representations				Р
(Algebren und ihre Darstellungen)				
Type of course Semester Hours Credit Points (ECTS): Responsibility				
Bachelor and Master 4+2 10 IAZD				
Frequency: irregular				

Topics:

An example-driven introduction to the representation theory of finite-dimensional algebras and to representations of quivers. Topics covered include:

- Representations of finite-dimensional algebras: indecomposable modules and the Krull-Schmidt theorem; representation type; projective and injective modules; introduction to the language of categories and functors; Ext-functors.
- Representations of quivers: hereditary algebras; quadratic forms associated to quivers; reflection functors; Gabriel's theorem on the representation type of quivers; Dynkin diagrams.

References:

- K. Erdmann, T. Holm: *Algebras and Representation Theory*, Springer Undergraduate Mathematics Series. Springer, 2018.
- Assem, D. Simson, A. Skowronski: *Elements of the Representation theory of Associative Algebras 1: Techniques of Representation Theory*, London Mathematical Society Student Texts 65, Cambridge University Press, 2006.

Recommended prior knowledge: (Einführung in die) Darstellungstheorie (A first course on representation theory.)

- Specialization Bachelor Algebra, Number theory, Discrete mathematics
- Elective module master Mathematics

Analytic Number Theory I			P	
(Analytische Zahlentheorie I)				
Type of course Semester Hours Credit Points (ECTS): Responsibility				

Bachelor and Master	2+2	5	IAZD		
Frequency: every other year, Win	Frequency: every other year, Winter Semester				
Topics: Introduction to analytic number theory, in particular: Arithmetic functions, Dirichlet series, Perron's formula, analytic properties of the zeta function, prime number theorem, introduction to sieve methods					
References					
 J. Brüdern, Einführung in die analytische Zahlentheorie, Springer-Verlag, 1995. H. Davenport, Multiplicative Number Theory, Springer-Verlag, 2000. H.L. Montgomery and R.C.Vaughan, Multiplicative Number Theory, I. Classical Theory, Cambridge University Press, 2007. 					
Recommended prior knowledge: Complex Analysis					
Module affiliation:					
 Specialization Bachelor Algebra, Number theory, Discrete mathematics 					
Elective module master Mathematics					

In each case it can be combined with lectures of Algebra, Number theory, Discrete mathematics (in particular: Analytic Number theory II) or Analysis or alternative lectures in agreement with examiner.

Analytic Number Theory II			Р
(Analytische Zahlentheorie II)			
Type of course Semester Hours Credit Points (ECTS): Responsibility			

Bachelor and Master	2+2	5	IAZD	
Frequency: every other year, Summer Semester				
Topics: Advanced treatment of analytic number theory. Possible topics include the Bombieri-Vinogradov theorem, Tauberian theorems, mean values and distributions of additive and multiplicative functions, applications of the Selberg-Delange and of the saddle point method.				
References				
 J. Brüdern, Einführung in die analytische Zahlentheorie, Springer-Verlag, 1995. H. Davenport, Multiplicative Number Theory, Springer-Verlag, 2000. H.L. Montgomery and R.C.Vaughan, Multiplicative Number Theory, I. Classical Theory, Cambridge University Press, 2007. G. Tenenbaum, Introduction to analytic and probabilistic number theory, Cambridge University Press, 1995. 				
Recommended prior knowledge: Complex Analysis, Analytic Number Theory I				
In each case it can be combined with lectures of Algebra, Number theory, Discrete mathematics (in particular: Analytic Number theory I) or Analysis or alternative lectures in agreement with examiner				
Module affiliation:				

Arithmetic Geometry I			Р	
	(Arithmetische	Geometrie I)		
Type of course Semester Hours Credit Points (ECTS): Responsibility				
Bachelor and Master	4+2	10	IAZD	
Eroguanau avani athar vaa	r Mintor Competer	•	•	

Frequency: every other year, Winter Semester

• Elective module master Mathematics

Topics:

Introductory course in arithmetic geometry, based on one of the following topics:

• Specialization Bachelor Algebra, Number theory, Discrete mathematics

- curves over finite fields
- elliptic curves

References

☐ Lorenzini: An Invitation to Arithmetic Geometry ☐ Silverman: The Arithmetic of Elliptic Curves

Recommended prior knowledge: Algebra II

- Specialization Bachelor Algebra, Number theory, Discrete mathematics
- Elective module master Mathematics

Arithmetic Geometry II				Р
(Arithmetische Geometrie II)				
Type of course Semester Hours Credit Points (ECTS): Responsibility				
Master	4+2	10	IAZD	
Frequency: every other year, Summer Semester				
Topics:				

Advanced course on one of the following topics:

- modular forms and modularity
- diophantine geometry
- arithmetic fundamental groups

References

Diamond, Shurman: A first course in modular forms

Hindry, Silverman: *Diophantine Geometry*

Recommended prior knowledge: Arithmetic Geometry I or Algebraic Geometry

Module affiliation:

Elective module master Mathematics

Representation theory				Р
(Darstellungstheorie)				
Type of course Semester Hours Credit Points (ECTS): Responsibility			•	
Bachelor und Master 4+2 10 IAZD				
Frequency: every other year	Winter Semester	•		

Frequency: every other year, Winter Semester

Topics:

The course provides an introduction into the theory of semisimple (associative) algebras, with a focus on group algebras and characters. Central topics are

- Modules and representations of groups and algebras (simple and semisimple modules, composition series, indecomposable modules, semisimple algebras, Jacobson radical, Artin-Wedderburn decomposition, Maschke's Theorem)
- Fundamentals of the character theory of finite groups (irreducible characters, inner product for characters, orthogonality relations, computation of character tables, tensor products and products of characters)

References

- G. James, M. Liebeck: Representations and Characters of Groups, Cambridge University Press, 2001 (2nd Edition).
- J. Jantzen, J. Schwermer: Algebra

Recommended prior knowledge: Algebra I is necessary, Algebra II is desirable

Module affiliation:

- Specialization Bachelor Algebra, Number theory, Discrete mathematics
- Elective module master Mathematics

Representation theory of symmetric groups				Р
(Darstellungstheorie symmetrischer Gruppen)				
Type of course Semester Hours Credit Points (ECTS): Responsibility				
Bachelor and Master				
Eroguanava avary athorygan V	lintar Camastar	•		

Frequency: every other year, Winter Semester

Topics:

Topics both from ordinary and modular representation theory of symmetric groups are covered, in particular:

- classification and properties of the irreducible characters of the symmetric groups
- symmetric functions
- permutation modules and Specht modules
- representations in positive characteristic: simple modules and the decomposition of Specht modules

References

- G. James, A. Kerber: The Representation Theory of the Symmetric Group
- B. Sagan: The Symmetric Group
- R. Stanley: *Enumerative Combinatorics II*

Recommended prior knowledge: Representation theory is necessary, Groups and their representations is desirable

Module affiliation:

- Specialization Bachelor Algebra, Number theory, Discrete mathematics
- Elective module master Mathematics

Enumerative combinatorics			Р	
	(Enumerative Kombinatorik)			
Type of course Semester Hours Credit Points (ECTS): Responsibility				
Bachelor	4+2	10	IAZD	
F.,,,		•	•	

Frequency: irregular

Topics:

- generating functions for weighted combinatorial objects
- bijective combinatorics
- constructive combinatorics

References

- R. Stanley: *Enumerative Combinatorics I, II*
- D. Stanton, D. White: *Constructive Combinatorics*

Recommended prior knowledge: Algebra I

Module affiliation:

• Specialization Bachelor Algebra, Number theory, Discrete mathematics

	Groups and their representations				
(Gruppen und ihre Darstellungen)					
Type of course					
Bachelor and Master 4+2 10 IAZD					
Frequency: every other year	r. Summer Semester	·	•		

Structure of finite groups and their ordinary and modular representations; in particular, the topics are:

- continuation of the theory of complex characters: induced characters, Frobenius reciprocity, Mackey's Theorem, character degrees and character values
- structure of groups: Sylow's theorems, solvable groups, Burnside's p^aq^b Theorem
- modular representation theory: indecomposable representations, projective and simple modules, induced representations, decomposition numbers, blocks of representations

References

- G. James, M. Liebeck: Representations and Characters of Groups
- H. Nagao, Y. Tsushima: Representations of finite groups

Recommended prior knowledge: Algebra II, Representation theory

Module affiliation:

- Specialization Bachelor Algebra, Number theory, Discrete mathematics
- Elective module master Mathematics

Homological Algebra				
(Homologische Algebra)				
Type of course Semester Hours Credit Points (ECTS): Responsibility				
Master 4+2 10 IAZD				
Frequency: irregular	<u>.</u>	•	•	

Topics:

Exact sequences; groups of homomorphisms; tensor products of modules over rings; projective, injective and flat modules; categories and functors; chain complexes and cochain complexes; homology and cohomology of complexes; projective and injective resolutions; derived functors; Ext-functors; Tor-functors and applications.

References

- Rotman: An Introduction to Homological Algebra (Second Edition)
- Weibel: An introduction to homological algebra

Recommended prior knowledge: Algebra II

Module affiliation:

• Elective module master Mathematics

	Topol	ogy		P
	(Topolo	ogie)		
Type of course	Semester Hours	Credit Points (ECTS):	Responsibility	•
Bachelor and Master	4+2	10	IAZD	
Frequency: irregular	·	·		
Topics:				
 Topological spaces, connected spaces, s compactness 	eparation axioms			
 connected spaces, s 	eparation axioms ucts, quotients)			
 connected spaces, s compactness constructions (produ homotopy of maps fundamental groups coverings References:	eparation axioms ucts, quotients)			
 connected spaces, s compactness constructions (prodution) homotopy of maps fundamental groups coverings References: K. Jänich: Topologie 	eparation axioms ucts, quotients)			
 connected spaces, s compactness constructions (produtions) homotopy of maps fundamental groups coverings References: K. Jänich: Topologie G. Laures, M. Szymil 	eparation axioms ucts, quotients)	naie		

Module affiliation:

Specialization Bachelor Algebra, Number theory, Discrete mathematics

B.2 Algebraic Geometry

Algebraic Surfaces				Р
	(Algebraische	e Flächen)		
Type of course Semester Hours Credit Points (ECTS): Responsibility				
Master and GRK	***	***	IAG	

Frequency: every 2 to 3 years, Summer Semester

Topics:

- birational maps betweem surfaces
- intersection theory
- Kodaira classification

References:

Beauville: *Complex algebraic surfaces*, CUP, 1983.

Recommended prior knowledge: Algebraic Geometry, helpful: Algebra II

Module affiliation:

• Elective module master Mathematics

	Algebraic Geometry I			
(Algebraische Geometrie I)				
Type of course Semester Hours Credit Points (ECTS): Responsibility				
Bachelor, Master and GRK	4+2	10	IAG	

Frequency: annual, Winter Semester

Topics:

- affine and projective varieties
- morphisms and rational maps
- dimension, degree, smoothness, singularities
- sheaves and schemes

Recommended prior knowledge: Algebra I; helpful: Algebra II, Complex analysis

- Specialization Bachelor Geometry
- Elective module master Mathematics

Algebraic Geometry II				Р
(Algebraische Geometrie II)				
Type of course Semester Hours Credit Points (ECTS): Responsibility				
Bachelor, Master and GRK 4+2 10 IAG				
Frequency: annual, Summer S	emester	•	•	

Key terms of modern algebraic geometry (schemes, sheaf cohomology, divisors) are introduced. Applications for the classification of algebraic curves and surfaces are presented.

Module affiliation:

- Specialization Bachelor Geometry
- Elective module master Mathematics

Algebraic topology			Р	
	(Algebraische	Topologie)		
Type of course	Semester Hours	Credit Points (ECTS):	Responsibility	
Bachelor and Master	4+2	10	IAG	
	<u> </u>	•	•	

Frequency: irregular

Topics:

- homology theory, singular homology, cell complex
- cohomology theory
- Poincaré duality

Recommended prior knowledge: Algebra I, helpful: Algebra II

- Specialization Bachelor Geometry
- Specialization Bachelor Algebra, Number theory, Discrete mathematics
- Elective module master Mathematics

Algorithmic Commutative Algebra				
(Algorithmische Kommutative Algebra)				
Type of course	Semester Hours	Credit Points (ECTS):	Responsibility	
Bachelor and Master	4+2	10	IAG	
Frequency: irregular				

- Polynomial systems
- Groebner Bases, syzygies, free resolutions
- Dimension, integral closure, primary decomposition

Recommended prior knowledge: Algebra I; helpful: Algebra II

Module affiliation:

- Specialization Bachelor Algebra, Number theory, Discrete mathematics
- Specialization Bachelor Geometry
- Elective module master Mathematics

Coding theory			Р
(Codierungstheorie)			
Type of course Semester Hours Credit Points (ECTS): Responsibility			
4+2 (2+1)	10 (5)	IAG	
	(Codierungs	(Codierungstheorie) Semester Hours Credit Points (ECTS):	(Codierungstheorie) Semester Hours Credit Points (ECTS): Responsibility

Frequency: irregular

Topics:

- linear codes
- special good codes
- decoding
- cyclic codes

Recommended prior knowledge: Algebra I

- Specialization Bachelor Algebra, Number theory, Discrete mathematics
- Specialization Bachelor Geometry
- Elective module master Mathematics

gebraic Curves			Р
(Ebene Algebraische Kurven)			
Type of course Semester Hours Credit Points (ECTS): Responsib			ility
2+1	5	IAG	
	ebraische Kurven) Semester Hours	ebraische Kurven) Semester Hours Credit Points (ECTS):	ebraische Kurven) Semester Hours Credit Points (ECTS): Responsib

Frequency: irregular

Topics:

- Intersection of plane curves, Bezout theorem
- Tangents, points of inflection, smoothness and singularities
- Polar curve, Hesse curve, dual curve, Plücker formulae

Recommended prior knowledge: Algebra I

Module affiliation:

- Specialization Bachelor Geometry
- Elective module master Mathematics

Lattices and Codes				Р
(Gitter und Codes)				
Type of course Semester Hours Credit Points (ECTS): Responsibility				У
Bachelor and Master 4+2 10 IAG				

Frequency: irregular

Topics:

- Integral lattices
- Linear codes
- Weight enumerators and theta functions

References:

W.Ebeling: *Lattices and Codes*, 3. Auflage, Springer, 2013.

Recommended prior knowledge: Algebra I, Complex analysis

- Specialization Bachelor Geometry
- Specialization Bachelor Algebra, Number theory, Discrete mathematics
- Elective module master Mathematics

Moduli Spaces				Р
(Modulräume)				
Type of course Semester Hours Credit Points (ECTS): Responsibili				ty
Master and GRK	***	***	IAG	

Frequency: every 2 to 3 years, Summer Semester

Topics:

- Moduli problems, coarse and fine moduli spaces
- · Construction of moduli spaces, geometric invariant theory
- Examples of moduli spaces, in particular moduli of curves

Recommended prior knowledge: Algebra II, Algebraic Geometry

Module affiliation:

• Elective module master Mathematics

Singularity				Р	
	(Singularitäten)				
Type of course Semester Hours Credit Points (ECTS): Responsibility				У	
Master and GRK					

Frequency: irregular

Topics:

- Holomorphic functions of several variables
- Analytic set germs
- Unfoldings and deformations
- Classification of singularities

References:

W. Ebeling: *Funktionentheorie*, *Differentialtopologie und Singularitäten*, Vieweg, 2001.

Recommended prior knowledge: Algebra II

Module affiliation:

• Elective module master Mathematics

B.3 Analysis

Functional Analysis				
(Funktionalanalysis)				-
Type of course	Semester Hours	Credit Points (ECTS):	Responsibility	
Bachelor and Master	4+2	10	Bauer, Escher, Schroh Walker	e,

Frequency: annual

Topics:

- Baire's theorem
- Hahn-Banach theorem, convexity
- Principle of uniform boundedness
- Open mapping theorem, closed graph theorem
- Linear operators in Hilbert space
- Compact operators
- Unbounded operators

Recommended prior knowledge: Analysis I-III, Linear Algebra I

Module affiliation:

- Specialization Bachelor Analysis
- Elective module Master Mathematik

Index theory				
(Indextheorie)				
Type of course	Type of course Semester Hours Credit Points (ECTS): Responsibility			
Bachelor and Master				
Frequency: irregular	•	-	•	

Topics:

- Fredholm operators in Banach spaces
- Spectral theory of compact operators and the Fredholm alternative
- Components of the Fredholm operators in Hilbert spaces
- Toeplitz operators and their index
- Computation of the index via the operator trace
- Pseudodifferential operators
- Fedosov's index formula

Recommended prior knowledge: Analysis I-III, Linear Algebra I, Functional Analysis

- Specialization Bachelor Analysis
- Elective module Master Mathematik

	Operator theory of	on Hilbert spaces		
(Operatortheorie auf Hilberträumen)			P/A	
Type of course	Semester Hours	Credit Points (ECTS):	Responsibility	
Bachelor and Master	2+1	5	Bauer	
Frequency: irregular		·		

- .

Topics:

- Schatten-p-classes
- Bergman space and reproducing kernel
- Toeplitz operators and Berezin transform
- Quantization and Fock space
- Bergman metric and oscillation
- Hankel operators
- Toeplitz algebra
- Fredholm property and the index of Toeplitz operators

Recommended prior knowledge: Analysis I-III, Functional Analysis

Module affiliation:

- Specialization Bachelor Analysis
- Elective module Master Mathematics

Analysis of Subriemannian Structures				
(Analysis Subriemannscher Strukturen)				P/A
Type of course	Semester Hours	Credit Points (ECTS):	Responsibility	
Bachelor and Master	2+1	5	Bauer	
Frequency: irregular				

Topics:

- Foundations of analysis on manifolds
- Subriemannian manifolds
- Non-holonomic constraints
- Chow-Rashevskii Theorem
- Geodesics in Subriemannian geometry and Hamiltonian formalism
- Hörmanders Theorem and hypoelliptic operators
- Subelliptic heat equation

Recommended prior knowledge: Analysis I-III, Functional Analysis

- Specialization Bachelor Analysis
- Elective module Master Mathematics

Pseudodifferential Operators			P/A	
(Pseudodifferentialoperatoren)				
Type of course	Semester Hours	Credit Points (ECTS):	Responsibility	
Bachelor and Master	2+1	5	Bauer, Escher, Schrohe	
Frequency: irregular	•	•	·	

- Fourier transform
- Tempered distributions
- Sobolev spaces
- Oscillatory integrals
- Symbol classes
- Continuity properties and calculus
- Ellipticity and parametrix construction
- Operators on manifolds
- Wave front sets

Recommended prior knowledge: Analysis I-III, Lineare Algebra I, Functional Analysis

Module affiliation:

- Specialization Bachelor Analysis
- Elective module Master Mathematics

Operator Algebras			Р	
(Operatoralgebren)				
Type of course Semester Hours Credit Points (ECTS): Responsibility				
Bachelor and Master				
Гианизана и јинанијан	•	•	•	

Frequency: irregular

Topics:

- Banach and C* Algebras
- Gelfand transform and functional calculus
- representations and GNS-construction
- Gelfand-Naimark Theorem
- von Neumann Algebras
- Double Commutation Theorem
- Projections in von Neumann Algebras
- Relative dimension
- Classification problem for von Neumann Factors

Recommended prior knowledge: Analysis I-III, Lineare Algebra I, Functional Analysis

- Specialization Bachelor Analysis
- Elective module Master Mathematics

B.4 Applied Analysis

Semigroups and Evolution Equations				P/A
(Halbgruppen und Evolutionsgleichungen)				
Type of course	Semester Hours	Credit Points (ECTS):	Responsibility	
Bachelor and Master	4+2	10	Escher, Walker	
Frequency: every 1 to 2 years				

Frequency: every 1 to 2 years

Topics:

- closed operators in Banach spaces
- strongly continuous and analytic semigroups
- generators of semigroups
- characterization theorems
- semilinear Cauchy problems
- fractional powers of operators
- maximal regularity

Recommended prior knowledge: Analysis I-III, Linear Algebra I and II

Module affiliation:

- Specialization Bachelor Analysis
- Elective module master Mathematics

Interpolation Theory and Applications				P/A
(Interpolationstheorie und Anwendungen)				
Type of course	Semester Hours	Credit Points (ECTS):	Responsibility	
Bachelor and Master	4+2	10	Escher, Walker	
Frequency: irregular				

Topics:

- real and complex interpolation method
- reiteration and duality theorems
- interpolation of Lebesgue and Sobolev spaces
- fractional powers of operators
- interpolation theory for elliptic boundary value problems
- applications to semigroup theory

Recommended prior knowledge: Semigroups and Evolution Equations or Functional Analysis

- Specialization Bachelor Analysis
- Elective module master Mathematics

Nonlinear Functional Analysis			P/A	
(Nichtlineare Funktionalanalysis)				
Type of course	Semester Hours	Credit Points (ECTS):	Responsibility	
Bachelor and Master	4+2	10	Escher, Walker	
F				

Frequency: every 1 to 2 years

Topics:

- implicit function theorem in Banach spaces
- degree theory
- bifurcation theory

Recommended prior knowledge: Analysis I-III, Lineare Algebra I and II

Module affiliation:

- Specialization Bachelor Analysis
- Elective module master Mathematics

(Partielle Differentialgleichungen) Type of course Semester Hours Credit Points (ECTS): Responsibility Payer Feeber Sehrehe					P/A
Pachalar and Master 4.2 10 Paular Esphar Sahraha	Type of course	Semester Hours	Credit Points (ECTS):	Responsibility	
bachelor and waster 4+2 10 bauer, Escrier, Schlone,	Bachelor and Master	4+2	10	Bauer, Escher, Schrohe,	
Walker. Lankeit				Walker. Lankeit	

Frequency: annual

Topics:

- method of characteristics
- distribution theory
- Laplace's equation, maximum principles
- Sobolev spaces
- variational methods
- Fourier transform
- wave equation
- heat equation

Recommended prior knowledge: Analysis I-III, Linear Algebra I and II

- Specialization Bachelor Analysis
- Elective module master Mathematics

Nonlinear Partial Differential Equations				P/A
(Nichtlineare partielle Differentialgleichungen)				
Type of course	Semester Hours	Credit Points (ECTS):	Responsibility	
Master	4+2	10	Escher, Walker	
Frequency: irregular				

- nonlinear elliptic and parabolic equations
- fixed point methods
- variational methods
- compactness methods
- monotone operators

Recommended prior knowledge: Partial Differential Equations I

Module affiliation:

- Specialization Bachelor Analysis
- Elective module master Mathematics

				P/A	
(Qualitative Theorie gewöhnlicher Differentialgleichungen)					
Type of course	Semester Hours	Credit Points (ECTS):	Responsibility		
Bachelor and Master	4+2	10	Escher,Walker		
Eroguenova ennuel	Francisco Control				

Frequency: annual

Topics:

- dynamical systems
- invariant sets
- limit sets
- stability and linearization principles
- periodic solutions

Recommended prior knowledge: Analysis I-III, Linear Algebra I and II

- Specialization Bachelor Analysis
- Elective module master Mathematics

B.5 Numerical Mathematics and Optimization

Intoduction to Adaptive Finite Element Method				Α
(Ein	führung in die Adaptive F	inite-Elemente-Methode)		
Type of course	Semester Hours	Credit Points (ECTS):	Responsibility	
Bachelor and Master	2+1	5	IfAM	
Frequency: every 2 to 3 year	irs			
Topics:				
 adaptive mesh refin 	nement for FEM			
 A posteriori error a 	nalysis			
error estimators: (e	.g. residual)			
 convergence 				
D. (
References:	nostoriari arrar astimatia	n in finite element analysis	Wiley 2000	
	posteriori error estimation	n in finite element analysis.	•	
		£::414414	!	
Nochetto/Siebert/V		finite element methods: an		
Nochetto/Siebert/V Multiscale, nonline	ar and adaptive approxim	ation, 409–542, Springer, 2	009.	
Nochetto/Siebert/V Multiscale, nonline Recommended prior knowl	ar and adaptive approxim	ation, 409–542, Springer, 2	009.	
Nochetto/Siebert/V Multiscale, nonline	ar and adaptive approxim	ation, 409–542, Springer, 2	009.	
Nochetto/Siebert/V Multiscale, nonline Recommended prior knowl	ar and adaptive approxim	ation, 409–542, Springer, 2	009.	
Nochetto/Siebert/V Multiscale, nonline Recommended prior knowl Equations	ar and adaptive approxim edge: Numerical Mather	ation, 409–542, Springer, 2	009.	

hp-Finite Element Methods				A
(hp-Finite Element Methoden)				
Type of course	Semester Hours	Credit Points (ECTS):	Responsibility	
Bachelor and Master	2+1	5	IfAM	
Frequency: regularly every	1 to 2 years		•	
Topics:				
Error reduction by		reasing degree of polynon	nial	

- Proof of exponential convergence in FEM
- Proof of exponential convergence ini Gauß quadrature
- Application to mechanics and electrodynamics
- Adaptive methods
- New developments in numerical analysis

References:

□ Standard literature, lecture notes

Recommended prior knowledge: Numerical Mathematics I and Numerics for Partial Differential **Equations**

Module affiliation:

Specialization Bachelor Numerics

Linear optimization				Α
(Lineare Optimierung)				
Type of course	Semester Hours	Credit Points (ECTS):	Responsibility	
Bachelor and Master	2+1	5	Steinbach	

Frequency: regularly every 2 to 3 years

Topics:

- Simplex method
- Theory of polyhedra
- Farkas lemma and extensions
- Duality theory

References:

U. Chvátal: Linear Programming

Recommended prior knowledge: Numerical Mathematics I, Algorithmic programming

Module affiliation:

• Specialization Bachelor Numerics

Multigrid and split and merge technique				Α
(Multigrid und Gebietszerlegung)				
Type of course	Semester Hours	Credit Points (ECTS):	Responsibility	-
Bachelor and Master	2+1	5	IfAM	
F.,	1.1-0			

Frequency: regularly every 1 to 2 years

Topics:

- Preconditioned iterative methods (Richardson, Jacobi)
- Multigrid (for finite difference and finite element methods)
- Multilevel methods (additive and multiplicative Schwarz methods)
- Domain decomposition methods (Schwarz alternating method)

References:

Standard literature, lecture notes

Recommended prior knowledge: Numerical Mathematics I

Module affiliation:

• Specialization Bachelor Numerics

Nonlinear optimization I				А
(Nichtlineare Optimierung I)				
Type of course	Semester Hours	Credit Points (ECTS):	Responsibility	
Bachelor and Master	4+2	10	Steinbach	
F 1.1		- I	I.	

Frequency: regularly every 2 to 3 years

Topics:

- Steepest descent method, Newton's method, line search, trust region
- Theory of constrained optimization: KKT conditions, ...
- Quadratic optimization: KKT factorizations, active set method
- Maratos effect, merit functions, SQP method

References:

J. Nocedal, S. Wright: *Numerical Optimization*, 2nd ed.

Recommended prior knowledge: Numerical Mathematics I and II, Algorithmic programming

Module affiliation:

• Specialization Bachelor Numerics

Nonlinear optimization II				A
(Nichtlineare Optimierung II)				
Type of course	Semester Hours	Credit Points (ECTS):	Responsibility	
Bachelor and Master	4+2	10	Steinbach	

Frequency: regularly every 2 to 3 years

Topics:

- Nonlinear CG method
- Techniques for high dimension models
- Interior point methods
- Further topics

References:

• J. Nocedal, S. Wright: *Numerical Optimization*, 2nd ed.

Recommended prior knowledge: Nonlinear optimization I

Module affiliation:

• Specialization Bachelor Numerics

	Numerics for contact problems			А
(Numerik für Kontaktprobleme)				
Type of course	Semester Hours	Credit Points (ECTS):	Responsibility	
Bachelor and Master	2+1	5	IfAM	
Frequency: regularly every 1 to 2 years				

- Existence and uniqueness of solutions for elliptic contact problems
- Variational inequalities, mixed formulations
- Penalty methods
- Iterative algorithms: Uzawa, Semi-smooth Newton's method
- Mulitfield problems (Mehrfeldprobleme), coupling with heat equation

References:

Standard literature, lecture notes

Recommended prior knowledge: Numerical Mathematics I and Numerics for Partial Differential Equations

Module affiliation:

Specialization Bachelor Numerics

Numerics for Partial Differential Equations			А	
(Numerik partieller Differentialgleichungen)				
Type of course	Semester Hours	Credit Points (ECTS):	Responsibility	
Bachelor and Master	4+2	10	IfAM	
Frequency: regularly every 1 to 2 years				

Topics:

- Galerkin method for elliptic boundary value problems
- Finite element spaces
- A-posteriori error estimation
- Methods for parabolic and hyperbolic differential equations

References:

P. Knabner, L. Angermann: *Numerik partieller Differentialgleichungen*

Recommended prior knowledge: Numerical Mathematics I and II

Module affiliation:

Specialization Bachelor Numerics

			Α	
(Numerische Methoden der Kontinuumsmechanik)				
Type of course	Semester Hours	Credit Points (ECTS):	Responsibility	
Bachelor and Master	4+2	10	IfAM	
Frequency: regularly every 1 to 2 years				

- Modelling: linear elastcity and fluid dynamics
- Discretization: mixed finite elements
- error estimates for Stokes

References:

Brezzi/Fortin: *Mixed and hybrid finite element methods.* Springer 1991

Recommended prior knowledge: Numerical Mathematics I and Numerics for Partial Differential Equations

Module affiliation:

- Specialization Bachelor Numerics
- Elective module master Mathematics

Numerical Methods for coupled and nonlinear Problems			Α	
(Numerische Methoden für gekoppelte und nichtlineare Probleme)				
Type of course	Semester Hours	Credit Points (ECTS):	Responsibility	
Bachelor and Master	4+2	10	IfAM	
Frequency: every 3 to 4 years				

Topics:

- Classification into nonlinear and coupled problems
- Regularisation, time and space discretization
- Nonlinear and linear solvers
- Adaptivity and inexacte solvers

References:

- Wick: *Numerical methods for nonlinear and coupled PDEs*, Vorlesungsskriptum, available online https://www.ifam.uni-hannover.de/2120.html.
- Glowinski: *Numerical methods for nonlinear variational problems.* Springer 1984.

Recommended prior knowledge: Numerical Mathematics I and Numerics for Partial Differential Equations

- Specialization Bachelor Numerics
- Elective module master Mathematics

Numerical methods for ordinary differential equations				Α
(Numerische Methoden für gewöhnliche Differentialgleichungen)				
Type of course	Semester Hours	Credit Points (ECTS):	Responsibility	
Bachelor and Master	2+1	5	IfAM	
Frequency: irregular				

- One step methods
- Stability
- Differential-algebraic equations
- Galerkin-method
- Shot methods
- Variational methods

References:

Rannacher: Einführung in die Numerische Mathematik, Heidelberg University Publishing, 2017.

Recommended prior knowledge: Numerical Mathematics I and II

Module affiliation:

- Specialization Bachelor Numerics
- Elective module master Mathematics

Optimization of Partial Differential Equations			А	
(Optimierung mit partiellen Differentialgleichungen)				
Type of course	Semester Hours	Credit Points (ECTS):	Responsibility	
Bachelor and Master	2+1	5	IfAM	
Frequency: irregular	<u>.</u>			

Topics:

- Linear-quadratic optimal control problems
- Existence and uniqueness
- adjoinded state
- Diskretization and optimization: FEM

References:

☐ Troeltzsch: *Optimal control of partial differential equations.* AMS, 2010.

Recommended prior knowledge: Numerical Mathematics I and Numerics for Partial Differential Equations

- Specialization Bachelor Numerics
- Elective module master Mathematics

Scientific Computing				А
Type of course	Semester Hours	Credit Points (ECTS):	Responsibility	•
Bachelor and Master	2+1	5	IfAM	
Frequency: irregular				

Numerical algorithms and their parallelization

References:

Bastian: *Lecture notes on parallel solution of large sparse linear system*, Vorlesungsskriptum, IWR Heidelberg, April 2018.

Recommended prior knowledge: Numerical Mathematics I and Numerics for Partial Differential Equations

Module affiliation:

- Specialization Bachelor Numerics
- Elective module master Mathematics

Discontinuous Galerkin Methods				Α
(Unstetige Galerkinverfahren)				
Type of course	Semester Hours	Credit Points (ECTS):	Responsibility	
Bachelor and Master	2+1	5	IfAM	
Frequency: irregular			•	

Topics:

- Basis ideas
- DG for stationry advection (flows, upwinding)
- DG for nonstationary PDE's of first order
- DG for elliptic problems (SIP)

References:

Ern/di Pietro: *Mathematical aspects of discontinuous Galerkin methods.* Springer 2012.

Recommended prior knowledge: Numerical Mathematics I and Numerics for Partial Differential Equations

- Specialization Bachelor Numerics
- Elective module master Mathematics

B.6 Differential Geometry

Gauge theory			Р	
(Eichfeldtheorie)				
Type of course	Semester Hours	Credit Points (ECTS):	Responsibility	
Bachelor, Master	2+2	5	IDG	

Frequency: irregular

Topics:

- Connections on principle bundles and its curvature
- Gauge transformations
- Yang-Mills functional and Yang-Mills equation
- self-dual and invariant connections
- non-minimal Yang-Mills connections
- magnetic monopoles and vortices

Recommended prior knowledge: Manifolds

- Spezialization Bachelor Geometry
- Elective module master Mathematics

Geometric evolution equations			Р	
(Geometrische Evolutionsgleichungen)				
Type of course	Semester Hours	Credit Points	Responsibility	•
Bachelor, Master	2+2	(ECTS):	IDG	
		5		

Frequency: irregular (english)

Topics:

- Variational problems on manifolds
- Harmonic map heat flow
- Mean curvature flow, Lagrangian mean curvature flow
- Ricci flow, Sasaki-Ricci flow
- Hamilton's maximum principle for tensors
- Short and longtime existence and convergence
- Singularities, Self-similar solutions, solitons, monotonicity formulas

Recommended prior knowledge: Analysis III, Manifolds, Riemannian geometry

- Spezialization Bachelor Geometry
- Elective module master Mathematics

Contact Geometry					
(Kontaktgeometrie)					
Type of course	Semester Hours	Credit Points	Responsibility		
Bachelor, Master	2+2	(ECTS):	IDG		
		5			

Frequency: irregular (english)

Topics:

- Contact structures, Reeb vector fields
- Legendre submanifolds
- Tight and overtwisted contact structures
- Contact Riemannian manifolds
- Sasaki manifolds
- Basic cohomology
- Sasaki-Ricci flow
- Relation to Kähler geometry

References:

• Blair, David: *Riemannian geometry of contact and symplectic manifolds*, Progress in Mathematics, Birkhäuser, 2010

Recommended prior knowledge: Manifolds, Riemannian geometry

- Spezialization Bachelor Geometry
- Elective module master Mathematics

Classic Differential Geometry			Р	
(Klassische Differentialgeometrie)				
Type of course	Semester Hours	Credit Points (ECTS):	Responsibility	
Bachelor and Master	4+2	10	IDG	
	<u> </u>	<u> </u>	<u> </u>	

Frequency: annual, Winter Semester

Topics:

- Regular submanifolds of arbitrary codimension
- Tangent spaces
- First fundamental form, length of a rectifiable curve, induced measure on regular submanifolds
- Second fundamental form, Gauß map, Weingarten map, principal curvatures, mean curvature, Gauß curvature
- Covariant derivatives on tangent and normal bundles
- Inner geometry
- Equations of Gauß (Theorema Egregium), Codazzi—Mainardi and Ricci
- Gobal theory of curves and surfaces: isoperimetric inequality, Umlaufsatz, theorems of Fenchel and Gauß-Bonnet

References:

- do Carmo, Manfredo P., *Differentialgeometrie von Kurven und Flächen*, Vieweg Studium: Aufbaukurs Mathematik, 1983
- Kühnel, Wolfgang: Differentialgeometrie: Kurven Flächen Mannigfaltigkeiten, Aufbaukurs Mathematik, Springer Spektrum

Recommended prior knowledge: Analysis I-II, Linear Algebra I

- Basic Bachelor Analysis
- Basic Bachelor Geometry
- Specialization Bachelor Analysis
- Specialization Bachelor Geometry

Riemannian Geometry			Р	
(Riemannsche Geometrie)				
Type of course Semester Hours Credit Points (ECTS): Responsibility			Responsibility	
Bachelor, Master	4+2	10	IDG	

Frequency: annual, Winter Semester

Topics:

- Riemannian metrics
- Parallel transport and geodesics
- Exponential map, injectivity radius and cut locus
- · Geodesic completeness, Hopf-Rinow theorem
- Connections on vector bundles
- Curvature of a connection
- The Riemann curvature tensor of the Levi-Civita connection, first and second Bianchi identity
- First and second variation of length and energy of a curve
- Conjugated points, Jacobi vector fields
- Symmetric and locally symmetric spaces
- Harmonic differential forms
- Hodge decomposition theorem

References:

- Jost, Jürgen: Riemannian Geometry and Geometric Analysis, Springer Verlag
- Gallot, Hulin, Lafontaine: Riemannian Geometry, Universitext, Springer Verlag
- Spivak, M.: A comprehensive introduction to differential geometry I-V, Publish or Perish

Recommended prior knowledge: Manifolds

Module affiliation:

- Specialization Bachelor Geometry
- Elective module master Mathematics

Complex differential geometry

(Komplexe Differentialgeometrie)				
Type of course Semester Hours Credit Points (ECTS): Responsibility				
Bachelor, Master	4+2	10	IDG	

Frequency: annual, Summer Semester

Topics:

- Complex manifolds
- falmost complex and complex structures, Nijenhuis tensor and integrability
- Hermitian manifolds, Classification by Gray and Hervella
- Kähler manifolds
- Dolbeault operators, Dolbeault decomposition theorem
- Hodge numbers, Serre duality
- Chern classes, forms and numbers
- Theorem of Gauß-Bonnet-Chern
- Calabi-Yau manifolds

References:

• Kobayashi S., Nomizu, K.: Foundations of differential geometry, Vol. II, Wiley Classics Library

Recommended prior knowledge: Manifolds, complex analysis

- Specialization Bachelor Geometry
- Elective module master Mathematics

Symplectic Geometry			Р	
(Symplektische Geometrie)				
Type of course	Semester Hours	Credit Points (ECTS):	Responsibility	
Bachelor, Master	4+2	10	IDG	
Fugginary imagginary	•	•		

Frequency: irregular

Topics:

- Linear symplectic geometry
- symplectic manifolds
- Cotangent bundle and co-adjoint orbits as symplectic manifolds
- Moser's principle and Darboux' theorem
- Hamiltonian vector fields, Poisson bracket, Hamiltonian action and momentum map
- capacities
- pseudo-holomorphic curves
- Models in classical mechanics
- Legendre transformation

References:

- Aebischer, Borer, Kälin, Leuenberger, Reimann: Symplectic geometry, Progress in Mathematics, Birkhäuser, 1994
- McDuff, Salamon; *Introduction to symplectic topology*, Oxford Mathematical Monographs, The Clarendon Press, Oxford University

Recommended prior knowledge: Manifolds

- Specialization Bachelor Geometry
- Elective module master Mathematics

Differential topology			P	
(Differentialtopologie)				
Type of course Semester Hours Credit Points (ECTS): Responsibility:				
Bachelor, Master	4+2	10	IDG	

Frequency: irregular

Topics:

- Regular and critical points and values
- The theorems of Sard and Brown
- Index of vektor fields, degree of a mapping, the theorem of Poincare-Hopf
- Morse theory und Morse inequalities
- Relative Cohomology
- Long exact sequences, Mayer-Vietoris sequence

References:

- Milnor, John W.: Topology from the differential view point, Princeton University Press
- Milnor, John W.: Morse theory, Princeton University Press

Recommended prior knowledge: Analysis III, Manifolds

- Spezialization Bachelor Geometry
- Elective module master Mathematics

B.7 Mathematical Stochastics

Asymptotic Statistics				
(Asymptotische Statistik)				Α
Type of course	Semester Hours	Credit Points (ECTS):	Responsibility	
Bachelor and Master 4+2 10 IfMS				
Frequency: irregular	•	•	•	

Frequency: irregular

Topics:

- contiguous distributions
- local asymptotic normality
- limit experiments
- asymptotically optimal tests
- asymptotic efficiency of estimators and tests

References

Van der Vaart: Asymptotic Statistics, Cambridge University Press, Cambridge, 1998.

Recommended prior knowledge: Probability and Statistics II

Module affiliation:

- Specialization Bachelor Stochastics
- Master elective module

Financial Mathematics 1				
Type of course	Semester Hours	Credit Points (ECTS):	Responsibility	
Bachelor and Master	4+2	10	Weber	
Frequency: annual	·	•	•	

Frequency: annual

Topics:

- Arbitrage Pricing Theory
- Preferences and Utlity
- Opimality and Equilibrium
- Risk Measures

References:

H. Föllmer& A.Schied: *Stochastic Finance*, de Gruyter, Berlin/New York, 2016.

Recommended prior knowledge: Probability and Statistics II

- Specialization Bachelor Stochastics
- Master elective module

Financial Mathematics 2				А
Type of course	Semester Hours	Credit Points (ECTS):	Responsibility	
Bachelor and Master	4+2	10	Weber	
Frequency: annual	•	•		

Frequency: annu

Topics:

- Introduction to Stochastic Analysis
- Financial Mathematics in Continuous Time: Princing and Hedging of Financial Derivatives (Equity Derivatives, Interest rate Derivatives, and Credit Derivatives), Optimal Investment

References

M. Musiela& R.Rutkowski: Martingale Methods in Financial Modelling, Springer, 2005.

Recommended prior knowledge: Probability and Statistics II, Financial Mathematics 1, possibly Stochastic Analysis

Module affiliation:

- Specialization Bachelor Stochastics
- Master elective module

Nonparametric Statistics			Α	
(Nichtparametrische Statistik)				
Type of course	Semester Hours	Credit Points (ECTS):	Responsibility	
Bachelor and Master	4+2	10	IfMS	

Frequency: irregular

Topics:

- order and rank statistics
- distribution free confidence regions
- locally best rank tests
- empirical distributions
- tests for goodness of fit
- nonparametric multivariate procedures

GrundlegendeLiteratur:

J. Hajek, Z. Sidak, P. K. Sen: *Theory of Rank Tests*, Academic Press, 1999.

Recommended prior knowledge: Probability and Statistics II

- Specialization Bachelor Stochastics
- Master elective module

Actuarial Mathematics 1				Α
Type of course	Semester Hours	Credit Points (ECTS):	Responsibility	•
Bachelor and Master	4+2	10	Weber	
Frequency: annual				

- Individual and Collective model
- Ruin Theory
- Premium Calculation
- Incurred But Not Reported Claims
- Risk Sharing and Reinsurance
- Interest Rates and Fixed Income
- Cash Flows and Mathematical Reserve
- Difference Equations and Differential Equations
- Hattendorf's Theorem
- Unit-linked policies
- Policies with Stochastic Interest Rate
- Market-Consistent Valuation

The lecture is split in Actuarial Mathematics I and Actuarial Mathematics 2.

References:

- T. Mack: Schadenversicherungsmathematik, WW Karlsruhe, 2002.
- K. Schmidt: *Versicherungsmathematik*, Springer, 2006.
- M. Koller: Stochastische Modelle in der Lebensversicherungsmathematik, Springer, 2000.
- R. Norberg: *Basic Life Insurance Mathematics*, LSE, 2002.

Recommended prior knowledge: Probability and Statistics II

- Specialization Bachelor Stochastics
- Master elective module

Actuarial Mathematics 2				4
Type of course	Semester Hours	Credit Points (ECTS):	Responsibility	
Bachelor and Master	4+2	10	Weber	
Frequency: annual		•		
Topics: Individual and Collect Ruin Theory Premium Calculation Incurred But Not Rep Risk Sharing and Rein Interest Rates and Fix Cash Flows and Math Difference Equations Hattendorf's Theorem Unit-linked policies Policies with Stochas Market-Consistent Vo	ported Claims Insurance Ixed Income Inematical Reserve In and Differential Equal In Interest Rate Interest Rate Interest Rate			

- T. Mack: Schadenversicherungsmathematik, WW Karlsruhe, 2002.
- K. Schmidt: *Versicherungsmathematik*, Springer, 2006.
- M. Koller: *Stochastische Modelle in der Lebensversicherungsmathematik*, Springer, 2000.
- R. Norberg: *Basic Life Insurance Mathematics*, LSE, 2002.

Recommended prior knowledge: Probability and Statistics II, Actuarial Mathematics I

- Specialization Bachelor Stochastics
- Master elective module

	Game Theory			
(Spieltheorie)				Α
Type of course	Semester Hours	Credit Points (ECTS):	Responsibility	
Bachelor and Master 2+1 5 IfMS				
Frequency: irregular		•		

Frequency: irregular

Topics:

- normal form of n-person games
- points of equilibrium
- mixed extensions
- two-person zero sum games
- minimax theorems and minimax strategies
- matrix games
- cooperative games
- Shapley value

References

F. Forgo, J. Szep, F. Szidarovszky: *Introduction to the Theory of Games: Concepts, Methods, Applications*, Kluwer, Dordrecht, 1999.

Recommended prior knowledge: Probability and Statistics II

Module affiliation:

- Specialization Bachelor Stochastics
- Master elective module

Statistical Decision Theory and Sequential Procedures				١.
(Statistische Entscheidungstheorie und Sequentialverfahren)			Α	
Type of course	Semester Hours	Credit Points (ECTS):	Responsibility	
Bachelor and Master	4+2	10	IfMS	
Frequency: irregular				

Frequency: irregular

Topics:

- decision kernels
- Bayes and minimax procedures for estimation and testing
- minimax theorems
- optimal stopping
- sequential Bayes procedures
- sequential likelihood ratio tests
- optimal sequential tests

References:

- Irle: Sequentialanalyse: Optimale sequentielle Tests, Teubner, Stuttgart, 1990.
- H. Strasser: *Mathematical Theory of Statistics*, de Gruyter, Berlin, 1985.

Recommended prior knowledge: Probability and Statistics II

- Specialization Bachelor Stochastics
- Master elective module

	Statis	tics		
(Statistische Verfahren)			Α	
Type of course	Semester Hours	Credit Points (ECTS):	Responsibility	
Bachelor and Master	4+2	10	Weber	
Frequency: irregular	·	•	-	

Frequency: irregular

Topics:

- tests for goodness of fit, bootstrap, density estimation, robust procedures
- models with covariates: regression, analysis of variance, generalized linear models

References

W. N. Venables und B. D. Ripley: *Modern Applied Statistics with S-Plus*, third edition. Springer, New York, 1999.

Recommended prior knowledge: Probability and Statistics I and II

Module affiliation:

- Specialization Bachelor Stochastics
- Master elective module

	Stochastic A	Analysis		
(Stochastische Analysis)			A/P	
Type of course	Semester Hours	Credit Points (ECTS):	Responsibility	
Bachelor and Master	4+2	10	IfMS	
Frequency: annual	•		•	

Topics:

- Stochastic Processes in Continuous Time: Brownian Motion, (Local) Martingales, Semimartingales, Markovian Processes, Levy Processes
- stochastic Integrals
- Representations of Martingales
- Girsanov's and its Applications
- Stochastic Differential Equations
- Applications to Financial Mathematics

References

- P. Protter: Stochastic Integration and Differential Equations, Springer, 2005
- D. Revuz, M. Yor: Continuous Martingales and Brownian Motion, Springer, 1999.
- L. C. G. Rogers, D. Williams: Diffusions, Markov Processes and Martingales, Volumes 1 & 2, Wiley, New York, 1987, 1994.

Recommended prior knowledge: Probability and Statistics II

- Specialization Bachelor Stochastics
- Master elective module

Stochastic Simulation				
(Stochastische Simulation)				Α
Type of course	Semester Hours	Credit Points (ECTS):	Responsibility	
Bachelor and Master	4+2	10	Weber	
Frequency: annual	•			
General sampling meth Simulation of stochasti Statistical and compute Variance reduction tecl Stochastic optimization Advanced topics by rec	c processes ational efficiency analys aniques			
References S. Asmussen und Glynn York, 2007. H. J. Kushner und G. G.		_		New
Recommended prior knowledg	e: Probability and Stati	stics I and II		
Module affiliation:				
 Specialization Bachelor 	Stochastics			
 Master elective module 				

Time Series Analysis				Α
	(Zeitreihena	nalyse)		
Type of course	Semester Hours	Credit Points (ECTS):	Responsibility	
Bachelor and Master	2+1	5	IfMS	
Frequency: irregular				
Topics:				
 stationary time series 				
autocovariance function	and spectral measure	2		
 autoregressive processes 	, moving average pro	cesses		
• spectral representation				
Kolmogorov's prediction	theory			
Statistics in the time don	main (estimators for t	he mean and covariance	function)	
Statistics in the frequence	cy domain (periodogra	am, estimators for the spe	ectral density)	
References				
JP. Kreiß,G. Neuhaus:E	inführung in die Zeitre	eihenanalyse, Springer, Be	erlin, 2006.	
Recommended prior knowledge	: Probability and Stat	istics II		
Module affiliation:				

• Specialization Bachelor Stochastics

Quantitative Risk Management				Α
Type of course Bachelor and Master	Semester Hours	Credit Points (ECTS): 10	Responsibility Weber	·

Regulariy: annual

Topics:

- Risk measures and risk aggregation
- Extreme value theory
- Multivariate modelling
- Copulas and dependence structure
- Credit risk management

References:

• A. J. McNeil, R. Fey, and P. Embrechts: *Quantitative Risk Management: Concepts, Techniques, and Tools*, Princeton Series in Finance, 2015.

Recommended prior knowledge: Probability and Statistics I and II, possibly Financial Mathematics 1

- Specialization Bachelor Stochastics
- Master elective module