

Bachelorstudiengang Mathematik Masterstudiengang Mathematik

Modulkatalog

Stand 1.11.2018

Fakultät für Mathematik und Physik der Leibniz Universität Hannover

Kontakt Studiendekanat der Fakultät für Mathematik und Physik

Appelstr. 11 A 30167 Hannover Tel.: 0511/ 762-4466

studiensekretariat@maphy.uni-hannover.de

Studienprodekan Prof. Dr. Christoph Walker

Welfengarten 1

30167 Hannover

studienprodekan@maphy.uni-hannover.de

Studiengangskoordination Dipl. Ing. Axel Köhler

Dr. Katrin Radatz

Appelstr. 11 A 30167 Hannover Tel.: 0511/ 762-5450

sgk@maphy.uni-hannover.de

Vorbemerkung

Der Modulkatalog Mathematik besteht aus zwei Teilen, den Modulbeschreibungen und dem Anhang mit den Vorlesungsbeschreibungen. Da in den Wahlmodulen verschiedene Vorlesungen gewählt werden können, werden diese im Anhang ausführlicher beschrieben. So sind in solchen Fällen die Angaben zu den Inhalten und der Häufigkeit des Angebots bei den Vorlesungen und nicht bei den Modulen zu finden.

Bitte beachten Sie, dass es sich hier um eine Zusammenstellung der Vorlesungen der Mathematik handelt, die regelmäßig angeboten werden. Insbesondere können weitere Vorlesungen im Vorlesungsverzeichnis den Wahlpflichtmodulen und den Wahlmodulen zugeordnet werden.

Der Modulkatalog sollte auch als Ergänzung zur Prüfungsordnung verstanden werden. Die aktuelle Version unserer Prüfungsordnung finden Sie unter

https://www.maphy.uni-hannover.de/de/studium/studierende/mathematik/

Inhaltsverzeichnis

STUDIENVERLAUFSPLAN	5
MODULE IM BACHELOR MATHEMATIK	7
PFLICHTMODULE BACHELOR	7
Analysis I	7
Analysis II	8
Fortgeschrittene analytische Methoden	9
Algebraische Methoden I	10
Schlüsselkompetenzen: Einführendes Computerpraktikum	11
Algebraische Methoden II	12
Fortgeschrittene algebraische Methoden	13
Praktische Verfahren der Mathematik	14
Stochastische Methoden	15
Proseminar	16
WAHLPFLICHTMODULE BACHELOR	17
Grundlagen Bachelor Algebra, Zahlentheorie, Diskrete Mathematik	17
Grundlagen Bachelor Analysis	17

Grundlagen Bachelor Geometrie	18
Grundlagen Bachelor Numerik	18
Grundlagen Bachelor Stochastik	19
Spezialisierung Bachelor Algebra, Zahlentheorie, Diskrete Mathematik	19
Spezialisierung Bachelor Analysis	20
Spezialisierung Bachelor Geometrie	20
Spezialisierung Bachelor Numerik	21
Spezialisierung Bachelor Stochastik	21
SEMINAR	22
BACHELORARBEIT	23
Module im master mathematik	24
Reine Mathematik 1	24
Reine Mathematik 2	24
Angewandte Mathematik 1	25
Angewandte Mathematik 2	25
Wahlmodul 1	26
Wahlmodul 2	26
Schlüsselkompetenzen	27
Masterarbeit	28
ANHANG:	29

Studien verlauf splan

	1. Semester	2. Semester	3. Semester	4. Semester	5. Semester	6. Semester	LP
	Analysis I 10 LP, SL, PL Lineare	Analysis II 10 LP, SL, PL Lineare	(Analysis III 10 LP, SL, PL) Algebra I	Stochastik I 10 LP, SL, PL	Analysis III 10 LP, SL, PL		_
Grundlagen	Algebra I 10 LP, SL, PL	Algebra II 10 LP, SL, PL	10 LP, SL, PL				
Gru		Algorith- misches Program- mieren 4 LP, PL	Numerische Mathematik I 10 LP, SL, PL				84
Schlüssel- kompeten zen	Seminar 5 LP, SL						5
ninar			Proseminar				5
Proseminar			5 LP, PL				
Wahl- bereich				Vorlesungen ir	n Umfang von 40) LP, 4xSL, 4xPL	40
Informatik	Grundlagen der theoretisch en Informatik 5 LP, SL, PL (auch 3. Sem.)				Datenstruktur en und Algorithmen 5 LP, SL, PL (auch 3. Sem.)		10
Anwen- dungsfach	Anwendungsf		riebswirtschaftsl swirtschaftslehre				18
Seminar					Seminar 5 LP, PL		5
Bachelor arbeit						Bachelorarbeit	13
Bache arbeit	00/4	0.1/0	1	H. DI		13 LP	
LP/ Prüfungs- leistungen	30/4	24/3	Je nach individu	eller Planung un	iterschiedlich		180

Module im Bachelor Mathematik

Pflichtmodule Bachelor

Modulname, Nr.	Analysis I	0201
Regelmäßigkeit	Wintersemester, jährlich	
Modulverantwortung	Institut für Analysis und Institut für Angewandte Mathemati	k
Art der Lehrveranstaltungen (SWS)	Vorlesung "Analysis I" (4 SWS) Übung zu "Analysis I" (2 SWS)	
Leistungsnachweis zum Erwerb der LP	Studienleistung: Übung Prüfungsleistung: Klausur	
Notenzusammensetzung	Note der Klausur	
Leistungspunkte (ECTS): 10	Präsenzstudium (h): 90 Selbststudium (h):	210

Kompetenzziele:

Kompetenz im Umgang mit mathematischer Sprache. Grundlegendes Verständnis für korrekte Lösung mathematischer Aufgaben mit Hilfe von eindimensionalen Konvergenzbetrachtungen, Differential- und Integralrechnung. Aufgrund der Übung sind die Studierenden vertraut mit mathematisch exakten Formulierungen und Schlussweisen in einfachen Kontexten und fähig, diese vorzutragen. Teamfähigkeit durch Bearbeitung von Aufgaben in Gruppen und deren Besprechung in der Übung.

Inhalte:

- Zahlbereiche, systematische Einführung reeller Zahlen;
- Folgen und Reihen;
- Konvergenz und Stetigkeit;
- Differentialrechnung für Funktionen in einer Variablen;
- Integralrechnung für Funktionen in einer Variablen.

Grundlegende Literatur:

- H. Amann & J. Escher: Analysis I, Birkhäuser Verlag, 2002
- 0. Forster: *Analysis 1*, Vieweg+Teubner 2008
- K. Königsberger: *Analysis 1*, Springer Verlag 2004

Empfohlene Vorkenntnisse:

Schulkenntnisse in Mathematik (gymnasiale Oberstufe)

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung:

- Bachelorstudiengang Mathematik
- Fächerübergreifender Bachelorstudiengang

Modulname, Nr.	Analysis II	0202
Regelmäßigkeit	Sommersemester, jährlich	
Modulverantwortung	Institut für Analysis und Institut für Angewandte Mathemati	k
Lehrveranstaltungen (SWS)	Vorlesung "Analysis II" (4 SWS) Übung zu "Analysis II" (2 SWS)	
Leistungsnachweis zum Erwerb der LP	Studienleistung: Übung Prüfungsleistung: Klausur	
Notenzusammensetzung	Note der Klausur	
Leistungspunkte (ECTS): 10	Präsenzstudium (h): 90 Selbststudium (h):	210

Grundlegendes Verständnis für die korrekte Lösung mathematisch-naturwissenschaftlicher Aufgaben mit Hilfe mehrdimensionaler Konvergenzbetrachtungen, Differential- und Integralrechnung. Sichere Beherrschung der entsprechenden Methoden und der mathematischen Beweistechniken. Teamfähigkeit durch Bearbeitung von Aufgaben in Gruppen und deren Besprechung in der Übung.

Inhalte:

- Topologische Grundbegriffe wie metrische und normierte Räume, Konvergenz, Stetigkeit, Vollständigkeit, Kompaktheit;
- Differentiation von Funktionen in mehreren Variablen, totale und partielle Differenzierbarkeit, Satz über Umkehrfunktionen und implizite Funktionen, lokale Extrema mit und ohne Nebenbedingungen; Vektorfelder und Potentiale:
- Mögliche Ergänzung: gewöhnliche Differentialgleichungen, Existenz, Eindeutigkeit, elementare Lösungsmethoden.

Grundlegende Literatur:

- H. Amann & J. Escher: Analysis II, Birkhäuser Verlag, 1999
- 0. Forster: Analysis 2, Vieweg+Teubner, 2006
- J. Jost: Postmodern Analysis, Springer Verlag 2005
- K. Königsberger: *Analysis 2*, Springer Verlag 2004

Empfohlene Vorkenntnisse:

- Lineare Algebra I
- Analysis I

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung:

- Bachelorstudiengang Mathematik
- Fächerübergreifender Bachelorstudiengang

Modulname, Nr.		Fortgeschrittene analytische Methoden			0203
Regelmäßigkeit		Wintersemester, jährlich			
Modulverantwortung		Institut für Analysis und Institut für Angewandte Mathematik			
Lehrveranstaltungen (SWS)		Vorlesung "Analysis III" (4 SWS) Übung zu "Analysis III" (2 SWS)			
Leistungsnachweis zum Erwerb der LP		Studienleistung: Übung Prüfungsleistung: Klausui	oder mündl	iche Prüfung	
Notenzusammensetzung		Note der Klausur oder der mündlichen Prüfung			
Leistungspunkte (ECTS):	10	Präsenzstudium (h):	90	Selbststudium (h):	210

Vertieftes Verständnis für analytische Methoden, insbesondere in der Maß- und Integrationstheorie sowie der Vektoranalysis. Fähigkeit zur selbständigen Erarbeitung schwierigerer mathematischer Argumentationen zu Themen der Vorlesung und deren Präsentation in den Übungsgruppen.

Inhalte:

Elemente der Lebesgueschen Maßtheorie; mehrdimensionales Lebesguesches Integral mit wesentlichen Sätzen (monotone und dominierte Konvergenz, Satz von Fubini,

 $Transformations satz); Vektor analysis; Integrals\"{a}tze; Mannigfaltigkeiten.$

Grundle	aende	Literatui	r
---------	-------	-----------	---

H. Amann	81 J.	Escher:	Anal	vsis	III

- W. M. Boothby: An introduction to differentiable manifolds and Riemannian geometry, Academic Press
- O. Forster: *Analysis 3*, Vieweg+Teubner, 2008
 - J. Jost: Postmodern Analysis, Springer Verlag 2005

Empfohlene Vorkenntnisse:

• Analysis I + II

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung:

- Bachelorstudiengang Mathematik
- Als Modul "Fortgeschrittene Mathematische Methoden A" auch für: Fächerübergreifender Bachelorstudiengang (Erstfach)

Modulname, Nr.	Algebraische Methoden I 010			
Regelmäßigkeit	Wintersemester, jährlich			
Modulverantwortung	Institut für Algebra, Zahlentheorie und Diskrete Mathematik und Institut für Algebraische Geometrie			
Lehrveranstaltungen (SWS)	Vorlesung "Lineare Algebra I" (4 SWS) Übung zu "Lineare Algebra I" (2 SWS)			
Leistungsnachweis zum Erwerb der LP	Die Studienleistung ist im Rahmen der Übung zu "Lineare Algebra I" zu erbringen. Prüfungsleistung: Klausur zu "Lineare Algebra I"			
Notenzusammensetzung	Note der Klausur			
Leistungspunkte (ECTS): 10	Präsenzstudium (h): 90 Selbststudium (h):	210		

Grundlegendes Verständnis für mathematische Denkweisen und ihre Anwendung auf verschiedene Probleme. Sicherer Umgang mit linearen Gleichungssystemen und den zugehörigen Lösungsmethoden und fundierte Kenntnisse der zugrundeliegenden algebraischen Strukturen. Ausdrucksfähigkeit in der Darstellung mathematischer Argumentationen und Kenntnis der dazu geeigneten Methoden.

Inhalte:

Lineare Algebra I:

- Grundlegende Eigenschaften von Vektorräumen (Basis und Dimension);
- lineare Abbildungen und Matrizen;
- Determinanten;
- lineare Gleichungssysteme mit Lösungsverfahren (Gauß-Algorithmus);
- Eigenwerte und Eigenvektoren;
- Diagonalisierung.

Grundlegende Literatur:

G. Fischer: Lineare Algebra, Springer 2013

Empfohlene Vorkenntnisse:

• Schulkenntnisse in Mathematik (gymnasiale Oberstufe)

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung:

- Bachelorstudiengang Mathematik
- Als Modul "Lineare Algebra I" auch für: Fächerübergreifender Bachelorstudiengang

Modulname, Nr.		Schlüsselkompetenzen: Einführendes Computerpraktikum			
Regelmäßigkeit		Wintersemester, jährlich			
Modulverantwortung		Institut für Algebraische Geometrie			
Lehrveranstaltungen (SWS)		Einführendes Computerpraktikum (3 SWS)			
Leistungsnachweis zum Erwerb der LP		Studienleistung nach Wahl des Dozenten			
Notenzusammensetzung					
Leistungspunkte (ECTS):	5	Präsenzstudium (h): 60 Selbststudium (h): 90			

Grundlegender Umgang mit vernetzten (Linux-/Unix-)Computersystemen; Befähigung zum sinnvollen und gezielten Einsatz von Computeralgebrasystemen als Hilfsmittel bei der Lösung von Problemstellungen aus der Analysis und der Linearen Algebra; insbesondere Auswahl der geeigneten Werkzeuge, Erkennen und Vermeiden von Fehlerquellen, Kennenlernen der Grenzen solcher Systeme, Einsatz von Visualisierung sowie Programmieren kleinerer eigener Prozeduren; Grundlagen der Darstellung von mathematischen Sachverhalten im Textsatzsystem LaTeX.

Inhalte:

- sicherer Umgang als Nutzer mit (Unix-)Rechnern im Multiuserbetrieb
- Grundlegende Funktionsweise und Verwendung eines Computeralgebrasystems inklusive erster Programmiererfahrungen
- Erstellen einfacher mathematischer Texte mit Formeln unter LaTeX
- exemplarische Anwendungen aus der Linearen Algebra (z.B. lineare Gleichungssysteme), aus der Analysis (z.B. Nullstellen, Funktionsgraphen) sowie im Zusammenhang mit Schulmathematik (etwa größter gemeinsamer Teiler);

Ausblicke in Form kleiner Projekte: z.B. Lösungsmengen polynomialer Gleichungen in 1,2 und 3 Veränderlichen in Visualisierung, chinesischer Restsatz.

Grundlegende Literatur:

T. Theobald, S. Iliman: Einführung in die Computerorientierte Mathematik, Springer Spektrum 2015

Empfohlene Vorkenntnisse:

- Lineare Algebra, Analysis auf Abiturniveau
- Erfahrungen im Umgang mit einem Computer im Umfang der Schulkenntnisse

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung:

Verwendbarkeit:

Modulname, Nr.		Algebraische Methoden II 01			0102
Regelmäßigkeit		Sommersemester, jährlich			
Modulverantwortung		Institut für Algebra, Zahlen Algebraische Geometrie	theorie und	d Diskrete Mathematik	und Institut für
Lehrveranstaltungen (SWS)		Vorlesung "Lineare Algebra Übung zu "Lineare Algebra			
Leistungsnachweis zum Erwerb der LP		Die Studienleistung ist im F Prüfungsleistung: Klausur	Rahmen dei	Übung zu erbringen.	
Notenzusammensetzung		Note der Klausur			
Leistungspunkte (ECTS):	10	Präsenzstudium (h):	90	Selbststudium (h):	210

Erweiterte mathematische Methodenkompetenz in Bezug auf lineare Strukturen und vertieftes Verständnis für algebraische Methoden und ihre Bezüge zu geometrischen Fragestellungen. Ausdrucksfähigkeit in der Darstellung mathematischer Argumentationen. Kompetenz bei der Anwendung mathematischer Theorien.

Inhalte:

- euklidische und unitäre Vektorräume;
- Orthonormalisierungsverfahren;
- orthogonale und unitäre Endomorphismen;
- Quadriken;
- Jordansche Normalform;
- multilineare Algebra.

Grundlegende Literatur:

G. Fischer: *Lineare Algebra*, Springer 2013

Empfohlene Vorkenntnisse:

Algebraische Methoden I

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung:

Verwendbarkeit:

Modulname, Nr.	Fortgeschrittene algebraische	0103	
Regelmäßigkeit	Wintersemester, jährlich		
Modulverantwortung	Institut für Algebra, Zahlentheorie und Diskrete Mathematik und Institut für Algebraische Geometrie		
Lehrveranstaltungen (SWS)	Vorlesung "Algebra I" (4 SWS) Übung zu "Algebra I" (2 SWS)		
Leistungsnachweis zum Erwerb der LP	Die Studienleistung ist im Rahmen der Übung zu erbringen. Prüfungsleistung: Klausur oder mündliche Prüfung		
Notenzusammensetzung	Note der Klausur oder der mündlichen Prüfung		
Leistungspunkte (ECTS): 10	Präsenzstudium (h): 90	Selbststudium (h):	210

Vertiefung des Verständnisses für algebraische Strukturen; Einsicht in Querbezüge in der Mathematik durch Anwendungen algebraischer Methoden im Bereich der elementaren Zahlentheorie und bei der Lösung klassischer geometrischer Konstruktionsprobleme. Fähigkeit zur selbständigen Erarbeitung schwierigerer mathematischer Argumentationen zu Themen der Vorlesung und deren Präsentation in den Übungsgruppen.

Inhalte:

Arithmetik der ganzen Zahlen; Gruppen (Permutationsgruppen, Symmetriegruppen, Gruppenoperationen); Ringe (Ideale, Polynomringe, Teilbarkeit, euklidische Ringe, Primfaktorzerlegung); Arithmetik modulo n (Kongruenzen, prime Restklassengruppen); Körper (algebraische Körpererweiterungen, Konstruktionen mit Zirkel und Lineal, Kreisteilungskörper, endliche Körper).

Grundlegende Literatur:

- G. Fischer: *Lehrbuch der Algebra*, Springer 2013
- E. Kunz: Algebra, Vieweg & Teubner 2013
- J. Wolfart: Einführung in die Zahlentheorie und Algebra, Vieweg & Teubner 2011

Empfohlene Vorkenntnisse:

• Algebraische Methoden I + II

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung:

Verwendbarkeit:

Bachelorstudiengang Mathematik

Als Modul "Algebra I" auch für:

- Fächerübergreifender Bachelorstudiengang
- Masterstudiengang Lehramt Gymnasium (Zweitfach Übergangsregelung)

Modulname, Nr.	Praktische Verfahren der Mathematik	0301		
Regelmäßigkeit	Wintersemester und Sommersemester, jährlich			
Modulverantwortung	Institut für Angewandte Mathematik			
Lehrveranstaltungen (SWS)	Vorlesung "Numerische Mathematik I" (4 SWS) Übung zu "Numerische Mathematik I" (2 SWS) Vorlesung "Algorithmisches Programmieren" (2SWS) Übung zu "Algorithmisches Programmieren" (2 SWS)			
Leistungsnachweis zum Erwerb der LP	Studienleistung: Die Übung zu "Numerische Mathematik I" Prüfungsleistung: Klausur zu "Numerische Mathematik I" und praktische Programmierprüfung zu "Algorithmisches Programmieren"			
Notenzusammensetzung	Gewichtetes Mittel der Note der Klausur (Gewicht 10) und der praktischen Programmierprüfung (Gewicht 4)			
Leistungspunkte (ECTS): 14	Präsenzstudium (h): 210 Selbststudium (h):	210		

Numerische Mathematik I: Kenntnis numerischer Methoden zur näherungsweisen Lösung einfacher mathematischer Problemstellungen. Einschätzung der Eignung verschiedener Methoden. Erkennen der Anwendbarkeitsgrenzen numerischer Methoden.

Algorithmisches Programmieren: Befähigung zum Einsatz von Programmiersprachen bei der Modellierung und Behandlung von Problemstellungen aus verschiedenen Gebieten der Mathematik und ihrer Anwendungsbereiche.

Inhalte:

Numerische Mathematik I: Interpolation von Funktionen durch Polynome und Splines, Quadraturformeln zur numerischen Integration, direkte Verfahren für lineare Gleichungssysteme: LR- und Cholesky-Zerlegung, iterative Verfahren für lineare Gleichungssysteme: Jacobi-, Gauss-Seidel, Conjugierte Gradienten, Newton-Verfahren für nichtlineare Gleichungssysteme, Kondition mathematischer Problemstellungen und Stabilität numerischer Algorithmen.

Algorithmisches Programmieren:

Implementieren und Testen elementarer numerischer Algorithmen in einer höheren Programmiersprache.

Grundlegende Literatur:

- A. Quarteroni, R. Sacco, F. Saleri: Numerische Mathematik I und II, Springer-Verlag.
- Ch. Eck, H. Garcke, P. Knabner: Mathematische Modellbildung, Springer-Verlag.

Empfohlene Vorkenntnisse:

- Lineare Algebra I und II und Analysis I und II
- Algorithmisches Programmieren

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung:

Verwendbarkeit:

Modulname, Nr.		Stochastische Metl	noden		0401
Regelmäßigkeit		Sommersemester, jährlich			
Modulverantwortung		Institut für Mathematisch	e Stochastik		
Lehrveranstaltungen (SWS)		Vorlesung "Mathematisch Übung zu "Mathematisch			
Leistungsnachweis zum Erwerb der LP		Studienleistung: Übung Prüfungsleistung: Klausur			
Notenzusammensetzung		Note der Klausur			
Leistungspunkte (ECTS): 1	10	Präsenzstudium (h):	90	Selbststudium (h):	210

Wissen über Grundlagen der Kombinatorik, Wahrscheinlichkeitstheorie und statistischer Methoden. Verständnis der Modelle, Beherrschung elementarer stochastischer Denkweisen und Beweistechniken. Fähigkeit zur mathematischen Beschreibung und Analyse einfacher zufallsabhängiger Problemstellungen und zum Lösen einfacher Aufgaben mit Präsentation in der Übung

Inhalte:

Die Vorlesung Stochastik I bietet eine Einführung in die Grundbegriffe der Wahrscheinlichkeitstheorie und Statistik.

Zu den Themen zählen:

- Grundbegriffe der Kombinatorik
- Axiomensystem der klassischen Wahrscheinlichkeitstheorie
- Bedingte Wahrscheinlichkeiten und Unabhängigkeit
- Zufallsvariablen und ihre Verteilungen
- Erwartungswert und Varianz
- Konvergenzbegriffe der Stochastik
- Grenzwertsätze für Summen von unabhängigen Zufallsvariablen
- Grundlagen der deskriptiven und beurteilenden Statistik

Grundlegende Literatur:

- Georgii, H.: *Stochastik*, de Gruyter
- Jacod, J. & Protter. P: *Probability Essentials*, Springer
- Krengel, U.: Einführung in die Wahrscheinlichkeitstheorie und Statistik, Vieweg & Teubner, 2005

Empfohlene Vorkenntnisse:

- Lineare Algebra I und II
- Analysis I und II

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung:

- Bachelorstudiengang Mathematik
- Fächerübergreifender Bachelorstudiengang (Erstfach)
- Masterstudiengang Lehramt Gymnasium (Zweitfach)

Modulname, Nr.		Proseminar			0001
Regelmäßigkeit		Wintersemester und Somi	mersemeste	r, jährlich	
Modulverantwortung		Institute der Mathematik			
Lehrveranstaltungen (SWS)		Proseminar (2 SWS)			
Leistungsnachweis zum Erwerb der LP		Seminarleistung mit schriftlicher Ausarbeitung			
Notenzusammensetzung		Note der Seminarleistung			
Leistungspunkte (ECTS):	5	Präsenzstudium (h):	30	Selbststudium (h):	120

Schriftliche Darstellung eines konkreten mathematischen Themas, seines Umfeldes und gegebenenfalls seines historischen Hintergrundes. Mündliche Präsentation der Ergebnisse. Fähigkeit zur Diskussion mit anderen Teilnehmenden. Einsatz geeigneter Medien (Wandtafel, PC, Projektor) bei der Vorbereitung und Präsentation.

Inhalte:

Unterschiedlich, je nach Thematik der Proseminare.

Grundlegende Literatur:

Unterschiedlich, je nach Thematik der Proseminare.

Empfohlene Vorkenntnisse:

Analytische und algebraische Methoden

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung:

Verwendbarkeit:

Wahlpflichtmodule Bachelor

Modulname, Nr.	Grundlagen Bachelor Algebra, Zahlentheorie, Diskrete Mathematik		0104	
Modulverantwortung	Institut für Algebra, Zahlentheorie und Diskrete Mathematik und Institut für Algebraische Geometrie			
Lehrveranstaltungen	Vorlesung mit Übung (4+2): Algebra II oder Diskrete Mathematik (siehe Anhang) Alternative Veranstaltungen können diesem Modul im Vorlesungsverzeichnis zugeordnet sein.			
Leistungsnachweis zum Erwerb der LP	Studienleistung: nach Wahl der Dozentin oder des Dozenten Prüfungsleistung: mündliche Prüfung oder Klausur			
Leistungspunkte (ECTS): 10	Präsenzstudium (h): 90 Selbststudium (h):		210	

Kompetenzziele:

Je nach gewählter Lehrveranstaltung erweiterte Kenntnisse in einem Bereich der Algebra oder Grundlagenkenntnisse der Diskreten Mathematik, Verständnis für relationale und operationale Strukturen sowie deren algebraische Behandlung. Kenntnis grundlegender Funktionen der Kombinatorik, ihrer Methoden und Anwendungen. Sicheres Beherrschen mathematischer Denkweise und Argumentation. Studierende sind in der Lage konkrete Aufgaben unter Anwendung geeigneter Methoden zu lösen.

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung:

Verwendbarkeit:

• Bachelorstudiengang Mathematik

Modulname, Nr.	Grundlagen Bachelor Analysis	0204		
Modulverantwortung	Institut für Analysis und Institut für Differentialgeometrie			
Lehrveranstaltungen	Vorlesung mit Übung (4+2): Funktionentheorie oder Mannigfaltigkeiten (siehe Anhang) Alternative Veranstaltungen können diesem Modul im Vorlesungsverzeichnis zugeordnet sein.			
Leistungsnachweis zum Erwerb der LP	Studienleistung: nach Wahl der Dozentin oder des Dozenten Prüfungsleistung: mündliche Prüfung oder Klausur			
Leistungspunkte (ECTS): 10	Präsenzstudium (h): 90 Selbststudium (h):	210		

Kompetenzziele:

Erweiterte Aneignung analytischer Denkweisen je nach gewählter Lehrveranstaltung anhand von Themen der Funktionentheorie und Topologie.

Sicheres Beherrschen mathematischer Denkweise und Argumentation. Studierende sind in der Lage konkrete Aufgaben unter Anwendung geeigneter Methoden zu lösen.

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung:

Verwendbarkeit:

Modulname, Nr.	Grundlagen Bachelor Geometrie	0501	
Modulverantwortung	Institut für Algebraische Geometrie und Institut für Differentialgeo	metrie	
Lehrveranstaltungen	Vorlesung mit Übung (4+2): Algebra II oder Mannigfaltigkeiten (siehe Anhang) Alternative Veranstaltungen können diesem Modul im Vorlesungsverzeichnis zugeordnet sein.		
Leistungsnachweis zum Erwerb der LP	Studienleistung: nach Wahl der Dozentin oder des Dozenten Prüfungsleistung: mündliche Prüfung oder Klausur		
Leistungspunkte (ECTS): 10	Präsenzstudium (h): 90 Selbststudium (h):	210	

Verständnis für geometrische Konstruktionen, räumliche Strukturen und das Zusammenspiel von algebraischen, geometrischen, analytischen und topologischen Methoden.

Sicheres Beherrschen mathematischer Denkweise und Argumentation. Studierende sind in der Lage konkrete Aufgaben unter Anwendung geeigneter Methoden zu lösen.

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung:

Verwendbarkeit:

• Bachelorstudiengang Mathematik

Modulname, Nr.	Grundlagen Bachelor Numerik	0302) -	
Modulverantwortung	Institut für Angewandte Mathematik	nstitut für Angewandte Mathematik		
Lehrveranstaltungen	Vorlesung mit Übung (4+2): Numerische Mathematik II (siehe Anhang) Alternative Veranstaltungen können diesem Modul im Vorlesungsverzeichnis zugeordnet sein.			
Leistungsnachweis zum Erwerb der LP	Studienleistung: nach Wahl der Dozentin oder des Dozenten Prüfungsleistung: mündliche Prüfung oder Klausur			
Leistungspunkte (ECTS): 10	Präsenzstudium (h): 90	Selbststudium (h): 210		

Kompetenzziele:

Kenntnisse numerischer Methoden zur näherungsweisen Lösung anspruchsvollerer mathematischer Problemstellungen. Einschätzung der Eignung verschiedener Methoden je nach Gegebenheit und der Grenzen der Anwendbarkeit numerischer Methoden. Sicheres Beherrschen mathematischer Denkweise und Argumentation. Studierende sind in der Lage konkrete Aufgaben unter Anwendung geeigneter Methoden zu lösen.

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung:

Verwendbarkeit:

Modulname, Nr.	Grundlagen Bachelor Stochastik 0		
Modulverantwortung	Institut für Mathematische Stochastik		
Lehrveranstaltungen	Vorlesung mit Übung (4+2): Stochastik II (siehe Anhang) Alternative Veranstaltungen können diesem Modul im Vorlesungsverzeichnis zugeordnet sein.		
Leistungsnachweis zum Erwerb der LP	Studienleistung: nach Wahl der Dozentin oder des Dozenten Prüfungsleistung: mündliche Prüfung oder Klausur		
Leistungspunkte (ECTS): 10	Präsenzstudium (h): 90	Selbststudium (h):	210

Erweiterte Grundkenntnisse der Stochastik und ihrer Anwendungen; Sicheres Beherrschen mathematischer Denkweise und Argumentation. Studierende sind in der Lage konkrete Aufgaben unter Anwendung geeigneter Methoden zu lösen.

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung:

Verwendbarkeit:

Bachelorstudiengang Mathematik

Modulname, Nr.	Spezialisierung Bachelor Algebra, Zahlentheorie, Diskrete Mathematik		
Modulverantwortung	Institut für Algebra, Zahlentheorie und Diskrete Mathematik und Institut für Algebraische Geometrie		
Lehrveranstaltungen	Vorlesungen nach Anhang, die diesem Modul zugeordnet sind. Im Vorlesungsverzeichnis können diesem Modul weitere Vorlesungen zugeordnet werden.		
Leistungsnachweis zum Erwerb der LP	Studienleistung: nach Wahl der Dozentin oder des Dozenten Prüfungsleistung: mündliche Prüfung		
Leistungspunkte (ECTS): 10	Präsenzstudium (h): 90	Selbststudium (h): 210	

Kompetenzziele:

Vertieftes Verständnis für algebraische Denkweisen und Methoden, gute inhaltliche Kenntnisse in Teilbereichen der Algebra oder Zahlentheorie. Vertiefte Kenntnisse der Theorie relationaler und operationaler Strukturen und ihrer Anwendungen, z. B. im Bereich der Codierung, der angewandten Algebra oder der algebraischen Kombinatorik. Die Studierenden haben die logische Struktur des Gebietes nachvollzogen, sind in der Lage die wichtigsten Aussagen herzuleiten und kennen die prominenten Beispiele. Studierende sind in der Lage, Probleme auf dem Gebiet zu analysieren, geeignete Lösungsmethoden zu identifizieren und anzuwenden. Sie sind fähig, das Vorgehen zu begründen und verständlich zu erklären.

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung:

Verwendbarkeit:

Modulname, Nr.		Spezialisierung Ba	chelor Ana	alysis	0205
Modulverantwortung		Institut für Analysis, Institut für Differentialgeometrie und Institut für Angewandte Mathematik			
Lehrveranstaltungen		Vorlesungen nach Anhang, die diesem Modul zugeordnet sind. Im Vorlesungsverzeichnis können diesem Modul weitere Vorlesungen zugeordnet werden.			
Leistungsnachweis zum Erwerb der LP		Studienleistung: nach Wahl der Dozentin oder des Dozenten Prüfungsleistung: mündliche Prüfung			
Leistungspunkte (ECTS):	10	Präsenzstudium (h):	90	Selbststudium (h):	210

Vertieftes Verständnis für allgemeine analytische, topologische und funktionentheoretische Methoden, Kenntnis qualitativer Methoden zur Untersuchung und Lösung gewöhnlicher und partieller Differentialgleichungen. Die Studierenden haben die logische Struktur des Gebietes nachvollzogen, sind in der Lage die wichtigsten Aussagen herzuleiten und kennen die prominenten Beispiele. Studierende sind in der Lage Probleme auf dem Gebiet zu analysieren, geeignete Lösungsmethoden zu identifizieren und anzuwenden. Sie sind fähig, das Vorgehen zu begründen und verständlich zu erklären.

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung:

Verwendbarkeit:

• Bachelorstudiengang Mathematik

Modulname, Nr.	Spezialisierung Bachelor Geor	0502	
Modulverantwortung	Institut für Algebraische Geometrie und Institut für Differentialgeometrie		
Lehrveranstaltungen	Vorlesungen nach Anhang, die diesem Modul zugeordnet sind. Im Vorlesungsverzeichnis können diesem Modul weitere Vorlesungen zugeordnet werden.		
Leistungsnachweis zum Erwerb der LP	Studienleistung: nach Wahl der Dozentin oder des Dozenten Prüfungsleistung: mündliche Prüfung		
Leistungspunkte (ECTS): 10	Präsenzstudium (h): 90	Selbststudium (h):	210

Kompetenzziele:

Vertiefte Kenntnisse der Zusammenhänge zwischen algebraischen, geometrischen, analytischen und topologischen Strukturen, Verbindung von räumlicher Anschauung mit axiomatischen Begriffsbildungen. Die Studierenden haben die logische Struktur des Gebietes nachvollzogen, sind in der Lage die wichtigsten Aussagen herzuleiten und kennen die prominenten Beispiele. Studierende sind in der Lage Probleme auf dem Gebiet zu analysieren, geeignete Lösungsmethoden zu identifizieren und anzuwenden. Sie sind fähig, das Vorgehen zu begründen und verständlich zu erklären.

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung:

Verwendbarkeit:

Modulname, Nr.	Spezialisierung Bachelor Num	nerik 0	303
Modulverantwortung	Institut für Angewandte Mathematik		
Lehrveranstaltungen	Vorlesungen nach Anhang, die diesem Modul zugeordnet sind. Im Vorlesungsverzeichnis können diesem Modul weitere Vorlesungen zugeordnet werden.		
Leistungsnachweis zum Erwerb der LP	Studienleistung: nach Wahl der Dozentin oder des Dozenten Prüfungsleistung: mündliche Prüfung		
Leistungspunkte (ECTS): 10	Präsenzstudium (h): 90	Selbststudium (h): 210	

Vertiefte Kenntnisse numerischer Methoden zur approximativen Lösung konkreter mathematischer Problemstellungen. Die Studierenden haben die logische Struktur des Gebietes nachvollzogen, sind in der Lage die wichtigsten Aussagen herzuleiten und kennen die prominenten Beispiele. Studierende sind in der Lage Probleme auf dem Gebiet zu analysieren, geeignete Lösungsmethoden zu identifizieren und anzuwenden. Sie sind fähig, das Vorgehen zu begründen und verständlich zu erklären.

qqf. Eingangsvoraussetzungen und qqf. Teilnehmerzahlbegrenzung:

Verwendbarkeit:

• Bachelorstudiengang Mathematik

Modulname, Nr.	Spezialisierung Bachelor Stochastik	0403	
Modulverantwortung	Institut für Mathematische Stochastik		
Lehrveranstaltungen	Vorlesungen nach Anhang, die diesem Modul zugeordnet sind. Im Vorlesungsverzeichnis können diesem Modul weitere Vorlesungen zugeordnet werden.		
Leistungsnachweis zum Erwerb der LP	Studienleistung: nach Wahl der Dozentin oder des Dozenten Prüfungsleistung: mündliche Prüfung		
Leistungspunkte (ECTS): 10	Präsenzstudium (h): 90 Selbststudium (h):	210	

Kompetenzziele:

Vertiefte Kenntnisse der Stochastik und ihrer Anwendungen. Die Studierenden haben die logische Struktur des Gebietes nachvollzogen, sind in der Lage die wichtigsten Aussagen herzuleiten und kennen die prominenten Beispiele. Studierende sind in der Lage Probleme auf dem Gebiet zu analysieren, geeignete Lösungsmethoden zu identifizieren und anzuwenden. Sie sind fähig, das Vorgehen zu begründen und verständlich zu erklären.

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung:

Verwendbarkeit:

Modulname, Nr.		Seminar		0950
Regelmäßigkeit		WiSe oder SoSe		
Modulverantwortung		Institute der Mathematik		
Lehrveranstaltungen (SWS)		Seminar (2 SWS)		
Leistungsnachweis zum Erwerb der LP		Präsentation mit schriftlicher Ausarbeitung		
Notenzusammensetzung		Note der Seminarleistung		
Leistungspunkte (ECTS):	5	Präsenzstudium (h) 30	Selbststudium (h):	120

Fähigkeit zur Einarbeitung in ein mathematisches Thema unter Anleitung. Wissenserwerb aus z.T. englischsprachigen Büchern und Fachzeitschriften. Fähigkeit zum wissenschaftlichen Schreiben. Präsentationstechniken und Medieneinsatz. Fähigkeit zur Diskussion eines mathematischen Themas.

Inhalte:

Einführung in das wissenschaftliche Arbeiten und das wissenschaftliche Schreiben

- eingegrenztes wissenschaftliches Thema zu Mathematik nach Absprache mit der Betreuerin/dem Betreuer,
- Benutzung von Fachliteratur/Datenbanken;
- mathematisches Aufschreiben;
- Präsentationstechniken und Medieneinsatz;

Mit dem Seminar wird der Einstieg in eine Bachelorarbeit vorbereitet.

Grundlegende Literatur: Unterschiedlich, je nach Thematik der Seminare.

Empfohlene Vorkenntnisse: Unterschiedlich, je nach Thematik der Seminare.

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung:

Verwendbarkeit:

Modulname, Nr.		Bachelorarbeit	0901
Regelmäßigkeit		Beginn ganzjährig möglich	
Modulverantwortung		Studiendekan/in	
Lehrveranstaltungen (SWS)		Projekt "Bachelorarbeit" (13 LP)	
Leistungsnachweis zum Erwerb der LP		Prüfungsleistung: Bachelorarbeit	
Notenzusammensetzung		Note der Bachelorarbeit	
Leistungspunkte (ECTS):	13	Präsenzstudium (h) & Selbststudium (h): 390	

Fähigkeit zur selbständigen Einarbeitung in ein Forschungsthema. Wissenserwerb aus z.T. englischsprachigen Büchern und Fachzeitschriften. Fähigkeit zur realistischen Planung, Zeiteinteilung und zum Durchführen eines wissenschaftlichen Projekts nach wissenschaftlichen Methoden unter Anleitung. Fähigkeit zum wissenschaftlichen Schreiben. Fähigkeit zur Diskussion der eigenen Arbeit und zur Selbstreflexion.

Inhalte:

Einführung in das wissenschaftliche Arbeiten, selbstständige Projektarbeit unter Anleitung, wissenschaftliches Schreiben

- eingegrenztes wissenschaftliches Thema zu Mathematik nach Absprache mit der Betreuerin/dem Betreuer,
- Benutzung von Fachliteratur/Datenbanken;
- mathematisches Aufschreiben;
- Präsentationstechniken und Medieneinsatz;
- Planung der Bachelorarbeit.

Grundlegende Literatur:

Empfohlene Vorkenntnisse:

Vertiefung zu einem mathematischen Thema im Rahmen eines Seminars

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung: mindestens 120 LP

Verwendbarkeit:

Bachelorstudiengang Mathematik

Prüfungsverfahren:

Das Thema der Bachelorarbeit wird von der oder dem Prüfenden nach Rücksprache mit dem Prüfling festgelegt. Die Ausgabe ist aktenkundig zu machen und dem Prüfling sowie dem Studiendekanat schriftlich mitzuteilen. Mit der Ausgabe des Themas wird die oder der Prüfende bestellt. Während der Anfertigung der Arbeit wird der Prüfling von der oder dem Prüfenden betreut.

Module im Master Mathematik

Modulname, Nr.	Reine Mathematik 1	0004
Modulverantwortung	Institute der reinen Mathematik	
Lehrveranstaltungen (SWS)	eine Vorlesung aus der Reinen Mathematik mit Übung (4V + 2Ü)	
Leistungsnachweis zum Erwerb der LP	Studienleistung: nach Wahl der Dozentin oder des Dozenten Prüfungsleistung: mündliche Prüfung oder Klausur	
Notenzusammensetzung	Note der mündlichen Prüfung oder der Klausur	
Leistungspunkte (ECTS): 10	Präsenzstudium (h): 90 Selbststudium (h):	210

Kompetenzziele:

Die Studierenden verbreitern ihr mathematisches Wissen. Sie gewinnen Einblicke in ein ausgewähltes Gebiet der reinen Mathematik. Sie erwerben die Fähigkeit, Probleme auf diesem Teilgebiet kompetent zu bearbeiten.

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung:

Verwendbarkeit:

• Masterstudiengang Mathematik

Modulname, Nr.		Reine Mathematik 2		0005	
Modulverantwortung		Institute der reinen Mathe	matik		
Lehrveranstaltungen (SWS)		eine Vorlesung aus der Rei	nen Mathe	matik mit Übung (4V + 2Ü)	
Leistungsnachweis zum Erwerb der LP		Studienleistung: nach Wahl der Dozentin oder des Dozenten Prüfungsleistung: mündliche Prüfung oder Klausur			
Notenzusammensetzung		Note der mündlichen Prüfung oder der Klausur			
Leistungspunkte (ECTS):	10	Präsenzstudium (h):	90	Selbststudium (h):	210

Kompetenzziele:

Die Studierenden verbreitern ihr mathematisches Wissen. Sie gewinnen Einblicke in ein ausgewähltes Gebiet der reinen Mathematik. Sie erwerben die Fähigkeit, Probleme auf diesem Teilgebiet kompetent zu bearbeiten.

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung:

Verwendbarkeit:

• Masterstudiengang Mathematik

Modulname, Nr.	Angewandte Mathematik 1	0056	
Modulverantwortung	Institut für Angewandte Mathematik, Institut für Mathema	tische Stochastik	
Lehrveranstaltungen (SWS)	eine Vorlesung aus der Angewandten Mathematik mit Übung (4V + 2Ü)		
Leistungsnachweis zum Erwerb der LP	Studienleistung: nach Wahl der Dozentin oder des Dozenten Prüfungsleistung: mündliche Prüfung oder Klausur		
Notenzusammensetzung	Note der mündlichen Prüfung oder der Klausur		
Leistungspunkte (ECTS): 10	Präsenzstudium (h): 90 Selbststudium (h):	210	

Die Studierenden verbreitern ihr mathematisches Wissen. Sie gewinnen Einblicke in ein ausgewähltes Gebiet der angewandten Mathematik. Sie erwerben die Fähigkeit, Probleme auf diesem Teilgebiet kompetent zu bearbeiten.

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung:

Verwendbarkeit:

• Masterstudiengang Mathematik

Modulname, Nr.	Angewandte Mathematik 2	0057	
Modulverantwortung	Institut für Angewandte Mathematik, Institut für Mathematische	Stochastik	
Lehrveranstaltungen (SWS)	eine Vorlesung aus der Angewandten Mathematik mit Übung (4V + 2Ü)		
Leistungsnachweis zum Erwerb der LP	Studienleistung: nach Wahl der Dozentin oder des Dozenten Prüfungsleistung: mündliche Prüfung oder Klausur		
Notenzusammensetzung	Note der mündlichen Prüfung oder der Klausur		
Leistungspunkte (ECTS): 10	Präsenzstudium (h): 90 Selbststudium (h):	210	

Kompetenzziele:

Die Studierenden verbreitern ihr mathematisches Wissen. Sie gewinnen Einblicke in ein ausgewähltes Gebiet der angewandten Mathematik. Sie erwerben die Fähigkeit, Probleme auf diesem Teilgebiet kompetent zu bearbeiten.

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung:

Verwendbarkeit:

Masterstudiengang Mathematik

Modulname, Nr.	Wahlmodul 1	0058
Modulverantwortung	Institute der Mathematik	
Lehrveranstaltungen (SWS)	eine Vorlesung mit Übung (4V + 2Ü)	
Leistungsnachweis zum Erwerb der LP	Studienleistung: nach Wahl der Dozentin oder des Dozenten Prüfungsleistung: mündliche Prüfung oder Klausur	
Notenzusammensetzung	Note der mündlichen Prüfung oder der Klausur	
Leistungspunkte (ECTS): 10	Präsenzstudium (h): 90 Selbststudium (h):	210

Die Studierenden verbreitern ihr mathematisches Wissen. Sie gewinnen Einblicke in ein ausgewähltes Gebiet der Mathematik. Sie erwerben die Fähigkeit, Probleme auf diesem Teilgebiet kompetent zu bearbeiten.

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung:

Verwendbarkeit:

• Masterstudiengang Mathematik

Modulname, Nr.		Wahlmodul 2			0059
Modulverantwortung		Institute der Mathematik			
Lehrveranstaltungen (SWS)		eine Vorlesung mit Übung (4	ŀV + 2Ü)		
Leistungsnachweis zum Erwerb der LP		Studienleistung: nach Wahl Prüfungsleistung: mündliche			
Notenzusammensetzung		Note der mündlichen Prüfung oder der Klausur			
Leistungspunkte (ECTS):	10	Präsenzstudium (h):	90	Selbststudium (h):	210

Kompetenzziele:

Die Studierenden verbreitern ihr mathematisches Wissen. Sie gewinnen Einblicke in ein ausgewähltes Gebiet der Mathematik. Sie erwerben die Fähigkeit, Probleme auf diesem Teilgebiet kompetent zu bearbeiten.

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung:

Verwendbarkeit:

Masterstudiengang Mathematik

Modulname, Nr.	Schlüsselkompetenzen	0060	
Semesterlage	jedes Semester		
Modulverantwortung	Institute der Mathematik		
Lehrveranstaltungen (SWS)	zwei Seminare (je 2 SWS)		
Leistungsnachweis zum Erwerb der LP	Prüfungsleistung: Seminarleistung in jedem der Seminare		
Notenzusammensetzung	Durchschnittsnote beider Seminarleistungen		
Leistungspunkte (ECTS): 10	Präsenzstudium (h): 60 Selbststudium (h):	240	

Die Studierenden besitzen die Fähigkeit, sich selbständig in ein Wissensgebiet einzuarbeiten. Dies umfasst insbesondere die selbständige Recherche der Fachliteratur zu einem vorgegebenen Thema und die Wissensgewinnung aus den Fachbüchern und -artikeln. Die Studierenden können inhaltliche Zusammenhänge erkennen. Sie erwerben Kenntnisse der englischen Fachsprache, um entsprechende Fachliteratur studieren zu können. Die Studierenden sind in der Lage, ein komplexes Thema der modernen Mathematik geeignet zu strukturieren und verständlich vorzutragen. Sie sind zu einem wissenschaftlichen Diskurs und zur Selbstreflexion fähig.

Inhalte:

Richten sich nach der Veranstaltung. Aktuelle Themen verschiedener mathematischer Gebiete.

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung:

Verwendbarkeit:

• Masterstudiengang Mathematik

Modulname, Nr.	Masterarbeit	0902
Semesterlage	Beginn ganzjährig möglich	
Modulverantwortung	Studiendekan/in	
Lehrveranstaltungen (SWS)	Projekt "Masterarbeit"	
Leistungsnachweis zum Erwerb der LP	Studienleistung: Referat Prüfungsleistung: Masterarbeit	
Notenzusammensetzung	Note der Masterarbeit (Durchschnittsnote der zwei Gutachten)	
Leistungspunkte (ECTS): 30	Arbeitsaufwand(h): 900	

Die Studierenden können sich selbstständig in ein Forschungsprojekt einarbeiten. Sie sind in der Lage, unter Anleitung wissenschaftliche Projekte zu strukturieren, vorzubereiten und durchzuführen. Sie verschaffen sich einen Überblick über die aktuelle Literatur und analysieren und lösen komplexe Probleme. Die Studierenden können kritische Diskussionen über eigene und fremde Forschungsergebnisse führen und konstruktiv mit Fragen und Kritik umgehen. Sie besitzen die Kompetenz, mathematische Sachverhalte selbstständig darzustellen.

Inhalte:

Einführung in das wissenschaftliche Arbeiten, selbstständige Projektarbeit unter Anleitung, wissenschaftliches Schreiben.

- aktuelles wissenschaftliches Problem zu Mathematik nach Absprache mit der Betreuerin/dem Betreuer;
- mathematisches Aufschreiben;
- aktuelle Fachliteratur/Datenbanken.

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung: mindestens 75 LP, Abschluss des Moduls Schlüsselkompetenzen

Verwendbarkeit:

Masterstudiengang Mathematik

Prüfungsverfahren:

Das Thema der Masterarbeit wird von der oder dem Erstprüfenden nach Rücksprache mit dem Prüfling festgelegt. Die Ausgabe ist aktenkundig zu machen und dem Prüfling sowie dem Studiendekanat schriftlich mitzuteilen. Mit der Ausgabe des Themas werden die oder der Erstprüfende und die oder der Zweitprüfende bestellt. Während der Anfertigung der Arbeit wird der Prüfling von der oder dem Erstprüfenden betreut.

Anhang:

Hier werden die Vorlesungen beschrieben, die in den Wahlpflichtmodulen im Bachelorstudium und in den Mastermodulen belegt werden können.

Die Vorlesungen im Anhang A können in den Grundlagenmodulen Bachelor belegt werden und teilweise in Spezialisierungsmodulen Bachelor. Die Vorlesungen im Anhang B können in den Mastermodulen und teilweise in Spezialisierungsmodulen Bachelor belegt werden.

Die Buchstaben R und A in der rechten oberen Ecke der Vorlesungsbeschreibung legen die Zuordnung der Vorlesung zur Reinen oder Angewandten Mathematik fest.

Ein *** bei der Semesterwochenstundenzahl und den Leistungspunkten bedeutet, dass die Veranstaltung je nach Gesamtangebot des jeweiligen Semesters als Vorlesung mit 4+2 SWS/ 10 LP oder mit 2+1 SWS/ 5 LP oder ggf. als Seminar angeboten wird. Genaue Angaben finden Sie im Vorlesungsverzeichnis.

Die benutzten Abkürzungen bedeuten:

IAG "Institut für Algebraische Geometrie";

IAZD "Institut für Algebra, Zahlentheorie und Diskrete Mathematik",

IDG "Institut für Differentialgeometrie"

IfAM "Institut für Angewandte Mathematik";

IfMS "Institut für Mathematische Stochastik".

A. VORLESUNGEN FUR GRUNDLAGENMODULE BACHELOR	33
Algebra II	33
Diskrete Mathematik	33
Mannigfaltigkeiten	34
Funktionentheorie	34
Numerische Mathematik II	35
Mathematische Stochastik II	35
B. VORLESUNGEN FÜR MODULE IM MASTER	37
B.1 ALGEBRA, ZAHLENTHEORIE UND DISKRETE MATHEMATIK:	37
Algebraische Kombinatorik	37
Algebraische Zahlentheorie I	37
Algebraische Zahlentheorie II	38
Algebren und ihre Darstellungen	39

Analytische Zahlentheorie I	39
Analytische Zahlentheorie II	40
Arithmetische Geometrie I	41
Arithmetische Geometrie II	41
Darstellungstheorie	42
Darstellungstheorie endlich-dimensionaler Algebren	Fehler! Textmarke nicht definiert.
Darstellungstheorie symmetrischer Gruppen	42
Enumerative Kombinatorik	43
Gruppen und ihre Darstellungen	44
Homologische Algebra	44
Kryptographie	Fehler! Textmarke nicht definiert.
Topologie	45
B.2 ALGEBRAISCHE GEOMETRIE	46
Algebraische Flächen	46
Algebraische Geometrie I	46
Algebraische Geometrie II	47
Algebraische Topologie	47
Algorithmische Kommutative Algebra	48
Codierungstheorie	48
Differentialtopologie	49
Ebene Algebraische Kurven	49
Gitter und Codes	50
Modulräume	50
Singularitäten	51
B.3 ANALYSIS	52
Funktionalanalysis	52
Indextheorie	52
Pseudodifferentialoperatoren	53

B.4 ANGEWANDTE ANALYSIS	54
Halbgruppen und Evolutionsgleichungen	54
Interpolationstheorie und Anwendungen	54
Nichtlineare Funktionalanalysis	55
Partielle Differentialgleichungen	55
Nichtlineare partielle Differentialgleichungen	56
Qualitative Theorie gewöhnlicher Differentialgleichungen	56
B.5 NUMERISCHE MATHEMATIK UND OPTIMIERUNG	57
hp-Finite Element Methoden	57
Lineare Optimierung	58
Multigrid und Gebietszerlegung	58
Nichtlineare Optimierung I	59
Nichtlineare Optimierung II	59
Numerik der Integralgleichungen	60
Numerik für Kontaktprobleme	60
Numerik Partieller Differentialgleichungen	61
Theorie der Näherungsverfahren	Fehler! Textmarke nicht definiert.
B.6 DIFFERENTIALGEOMETRIE	65
Analysis auf Mannigfaltigkeiten	65
Eichfeldtheorie	65
Klassische Differentialgeometrie	66
Elliptische Differentialgleichungen aus der Geometrie	66
Geometrische Evolutionsgleichungen	67
Komplexe Differentialgeometrie	67
Konforme Geometrie	68
Riemannsche Geometrie	68
Spin-Geometrie	69
Symplektische Geometrie	69

Transformationsgruppen	70
B.7 MATHEMATISCHE STOCHASTIK	71
Asymptotische Statistik	71
Finanzmathematik in diskreter Zeit	71
Finanzmathematik in stetiger Zeit	72
Finanzmathematik: Aktuelle Entwicklungen in der Finanzmathematik	72
Markov-Ketten	73
Nichtparametrische Statistik	73
Personenversicherungsmathematik	74
Schadenversicherungsmathematik	74
Spieltheorie	75
Statistische Entscheidungstheorie und Sequentialverfahren	75
Statistische Verfahren	76
Stochastische Analysis	76
Stochastische Methoden des Operations Research	77
Stochastische Simulation	78
Zufällige diskrete Strukturen und Algorithmen	78
7eitreihenanalyse	79

A. Vorlesungen für Grundlagenmodule Bachelor

Algebra II				R
Art der Vorlesung	SWS	Leistungspunkte: 10	Verantwortung	
Bachelor	4+2		IAZD und IAG	

Regelmäßigkeit: jährlich, Sommersemester

Inhalt:

- Körpertheorie (Struktur endlich erzeugter Körpererweiterungen, Galoistheorie, Auflösbarkeit von Gleichungen)
- Moduln und Algebren (Noethersche Ringe, Hilbertscher Basissatz, ganze Ringerweiterungen, Moduln über Hauptidealringen, Satz von Artin-Wedderburn, Tensorprodukte)

Grundlegende Literatur:

J.C. Jantzen, J. Schwermer: *Algebra*, Springer 2006

Empfohlene Vorkenntnisse: Algebra I

Modulzugehörigkeit:

- Grundlagen Bachelor Algebra, Zahlentheorie, Diskrete Mathematik
- Grundlagen Bachelor Geometrie
- Spezialisierung Bachelor Algebra, Zahlentheorie, Diskrete Mathematik
- Spezialisierung Bachelor Geometrie

Diskrete Mathematik				R
Art der Vorlesung	SWS	Leistungspunkte: 10	Verantwortung	
Bachelor	4+2		IAZD	
	_			

Regelmäßigkeit: jährlich, Sommersemester

Inhalt: Themenbereiche der Vorlesung sind insbesondere:

- Enumerationsmethoden und Kombinatorik
- Erzeugende Funktionen
- Graphentheorie
- Fehlerkorrigierende Codes
- Zählen unter Symmetrien

Grundlegende Literatur:

M. Aigner: *Diskrete Mathematik*F. Harary: *Graphentheorie*

Empfohlene Vorkenntnisse: Algebra I

Modulzugehörigkeit:

Grundlagen Bachelor Algebra, Zahlentheorie, Diskrete Mathematik

Mannigfaltigkeiten				R
Art der Vorlesung	SWS	Leistungspunkte: 10	Verantwortung	
Bachelor	4+2		IDG	
Regelmäßigkeit: jährlich, Sommersemester				

Inhalt:

- Topologische und differenzierbare Manigfaltigkeiten
- Tangential- und Kotangentialräume und bündel
- Differentialformen und Vektorfelder
- Lie-Ableitungen, Lie-Gruppen und -Algebren
- Integration auf Mannigfaltigkeiten, der Satz von Stokes
- Vektorbündel und Tensorfelder
- Zusammenhänge auf Vektorbündeln, Paralleltransport, kovariante Ableitung und Holonomie

Grundlegende Literatur:

- Boothby, William M., *An introduction to differentiable manifolds and Riemannian geometry*, Academic Press, Inc., Orlando, FL, 1986
- Milnor: Topology from the Differentiable Viewpoint, Princeton University Press
- Lee, John M., Introduction to smooth manifolds, Graduate Texts in Mathematics 218, Springer-Verlag, New York
- Warner, Frank W., Foundations of differentiable manifolds and Lie groups, Graduate Texts in Mathematics 94, Springer-Verlag New York-Berlin

Empfohlene Vorkenntnisse: Analysis III

Modulzugehörigkeit:

- Grundlagen Bachelor Analysis
- Grundlagen Bachelor Geometrie
- Spezialisierung Bachelor Analysis
- Spezialisierung Bachelor Geometrie
- Wahlmodul Bereich Reine Mathematik im Master Mathematik

Funktionentheorie				R
Art der Vorlesung	SWS	Leistungspunkte: 10	Verantwortung	-
Bachelor	4+2		Institut für Analysis	
Regelmäßigkeit: jährlich, Somm	ersemester			

Inhalt:

- holomorphe und meromorphe Funktionen
- Cauchyscher Integralsatz
- lokale Abbildungseigenschaften holomorpher Funktionen
- Residuensatz
- Riemannscher Abbildungssatz

Grundlegende Literatur:

- L. Ahlfors: Complex Analysis, McGraw-Hill, New York, 1978.
- J. Conway: Functions of one Complex Variable, Springer-Verlag, New York 1995.
- W. Rudin: *Real and Complex Analysis*, McGraw-Hill, New York, 1987.

Empfohlene Vorkenntnisse: Analysis I-III

Modulzugehörigkeit:

- Grundlagen Bachelor Analysis
- Spezialisierung Bachelor Analysis

Numerische Mathematik II				Α
Art der Vorlesung	SWS	Leistungspunkte: 10	Verantwortung	
Bachelor und Master	4+2		IfAM	
Daniel "O'				

Regelmäßigkeit: jährlich, Sommersemester

Inhalt:

Numerische Verfahren für Eigenwertaufgaben: inverse Iteration, QR- und Lanczos-Verfahren, Anfangswertaufgaben für gewöhnliche Differentialgleichungen: Runge-Kutta-Verfahren, Schrittweitensteuerung, steife Differentialgleichungen

Grundlegende Literatur:

A. Quarteroni, R. Sacco, F. Saleri: *Numerische Mathematik I und II*, Springer-Verlag.

Empfohlene Vorkenntnisse: Numerische Mathematik I

Modulzugehörigkeit:

- Grundlagen Bachelor Numerik
- Spezialisierung Bachelor Numerik

Mathematische Stochastik II				Α
Art der Vorlesung	SWS	Leistungspunkte: 10	Verantwortung	
Bachelor	4+2		IfMS	

Regelmäßigkeit: jährlich, Wintersemester

Inhalt:

- Maßtheoretische Grundlagen
- Klassische Grenzwertsätze
- Martingale
- Schätz- und Testtheorie

Grundlegende Literatur:

- P. Billingsley: *Probability and Measure*, Wiley, New York, 1995.
- L. Rüschendorf: *Mathematische Statistik*, Springer, Berlin, 2014.

Empfohlene Vorkenntnisse: Mathematische Stochastik I

Modulzugehörigkeit:

- Grundlagen Bachelor Stochastik
- Spezialisierung Bachelor Stochastik

Kryptographie				R/A
Art der Vorlesung	SWS	Leistungspunkte: 10	Verantwortung	
Bachelor	4+2		IAZD/IAG	
Regelmäßigkeit: unregelmäßig	9			
Inhalt:				
 allgemeine Konzepte o RSA-Verfahren der diskrete Logarithm	7, 3	phie		
Grundlegende Literatur:				
Buchmann: Einführun	g in die Krypt	ographie		
Karpfinger, Kiechle: <i>Ki</i>	yptologie, Vi	eweg+Teubner 2010		
Empfohlene Vorkenntnisse: A	Algebra I			
Modulzugehörigkeit:				
 Spezialisierung Bache 	lor Algebra, Z	ahlentheorie, Diskrete Mathe	matik	

B. Vorlesungen für Module im Master

B.1 Algebra, Zahlentheorie und Diskrete Mathematik:

Algebraische Kombinatorik				R
Art der Vorlesung	SWS	Leistungspunkte: 10	Verantwortung	
Bachelor und Master	4+2		IAZD	
D 1 "0" 1 " 1 "0"				

Regelmäßigkeit: unregelmäßig

Inhalt:

In der algebraischen Kombinatorik werden einerseits Methoden aus der Algebra, insbesondere der Gruppentheorie und der Darstellungstheorie, für kombinatorische Fragestellungen eingesetzt, und andererseits werden kombinatorische Zugänge für die Algebra fruchtbar gemacht. Themenfelder aus diesem Wechselwirkungsbereich sind insbesondere

- Young-Tableaux und Partitionen
- symmetrische Funktionen
- gewichtete Enumeration unter Gruppenoperationen
- symmetrische Gruppen

Grundlegende Literatur:

- W. Fulton: Young Tableaux, Cambridge University Press 1997
- R. Stanley: Enumerative Combinatorics II, Cambridge University Press 1997
- R. Stanley: *Algebraic Combinatorics*, Springer Verlag 2013

Empfohlene Vorkenntnisse: Algebra I, Grundlagen aus der Kombinatorik

Bemerkung;

Für eine Vertiefung kombinierbar z.B. mit: Enumerative Kombinatorik, Darstellungstheorie

Modulzugehörigkeit:

- Spezialisierung Bachelor Algebra, Zahlentheorie, Diskrete Mathematik;
- Wahlmodul Bereich Reine Mathematik im Master Mathematik

Algebraische Zahlentheorie I				R
Art der Vorlesung	SWS	Leistungspunkte: 10	Verantwortung	
Bachelor und Master	4+2		IAZD	

Regelmäßigkeit: alle zwei Jahre, Wintersemester

Inhalt: Einführung in die algebraische Zahlentheorie, ausführliche Behandlung der folgenden Themen:

- Arithmetik algebraischer Zahlkörper
- Zeta- und L-Reihen

Grundlegende Literatur:

Neukirch: *Algebraische Zahlentheorie*, Springer Verlag 2006

Empfohlene Vorkenntnisse: Algebra II

- Spezialisierung Bachelor Algebra, Zahlentheorie, Diskrete Mathematik
- Wahlmodul Bereich Reine Mathematik im Master Mathematik

Algebraische Zahlentheorie II				R
Art der Vorlesung	SWS	Leistungspunkte: 10	Verantwortung	
Bachelor und Master	4+2		IAZD	
Regelmäßigkeit: alle 2 Jahre, Sor	nmersemester			
Inhalt: Vertiefung der Algebraiso der folgenden Themenbereich • p-adische Zahlkörper • Klassenkörpertheorie • algorithmische Probleme	ne:	orie durch die Behandlung	eines oder mehrere	
, ,	ational Algebro	nic Number Theory, Springe	r Verlag 2000	
Empfohlene Vorkenntnisse: Alge	oraische Zahle	ntneorie i		
Modulzugehörigkeit: • Spezialisierung Bachelor	Algebra 7able	ntheorie, Diskrete Mathem	atik	
Wahlmodul Bereich Rein		•	utik	

Algebren und ihre Darstellungen				
Art der Vorlesung	SWS	Leistungspunkte: 10	Verantwortung	
Bachelor und Master	4+2		IAZD	
Regelmäßigkeit: unregelmäßi	a	•		

Eine beispielorientierte Einführung in die Darstellungstheorie endlich-dimensionaler Algebren und Darstellungen von Köchern. Zentrale Themenbereiche sind:

- Darstellungstheorie endlich-dimensionaler Algebren: Unzerlegbare Moduln und Satz von Krull-Remak-Schmidt, Darstellungstyp, projektive und injektive Moduln, Einführung in die Sprache der Kategorien und Funktoren, Ext-Funktoren
- Darstellungen von Köchern: erbliche Algebren, quadratische Form eines Köchers,
 Spiegelungsfunktoren, Satz von Gabriel über Darstellungstyp von Köchern und den Zusammenhang mit Dynkin-Diagrammen und Lie-Theorie

Grundlegende Literatur:

- K. Erdmann, T. Holm: *Algebras and Representation Theory* (Manuskript kann zur Verfügung gestellt werden).
- Assem, D. Simson, A. Skowronski: *Elements of the Representation theory of Associative Algebras 1: Techniques of Representation Theory*, London Mathematical Society Student Texts 65, Cambridge University Press, 2006.

Empfohlene Vorkenntnisse: (Einführung in die) Darstellungstheorie

Modulzugehörigkeit:

- Spezialisierung Bachelor Algebra, Zahlentheorie, Diskrete Mathematik
- Wahlmodul Bereich Reine Mathematik im Master Mathematik

Analytische Zahlentheorie I				R
Art der Vorlesung	SWS	Leistungspunkte:	Verantwortung	
Bachelor und Master	2+2	5	IAZD	

Regelmäßigkeit: alle zwei Jahre, Wintersemester

Inhalt: Einführung in die analytische Zahlentheorie, insbesondere

Arithmetische Funktionen, Dirichletreihen, Perronsche Formel, analytische Eigenschaften der Zeta-Funktion, Primzahlsatz, Einführung in Siebmethoden

Grundlegende Literatur:

- [1] J. Brüdern, Einführung in die analytische Zahlentheorie, Springer-Verlag, 1995.
- [2] H. Davenport, Multiplicative Number Theory, Springer-Verlag, 2000.
- [3] H.L. Montgomery and R.C. Vaughan, Multiplicative Number Theory, I. Classical Theory, Cambridge University Press, 2007.

Empfohlene Vorkenntnisse: Funktionentheorie

Modulzugehörigkeit:

- Spezialisierung Bachelor Algebra, Zahlentheorie, Diskrete Mathematik
- Wahlmodul Bereich Reine Mathematik im Master Mathematik

Jeweils kombinierbar mit Vorlesungen der Algebra, Zahlentheorie, Diskrete Mathematik (insbesondere: Analytische Zahlentheorie II) oder Analysis oder anderen Vorlesungen in Absprache mit der/m Prüfenden.

Analytische Zahlentheorie II	, and the second			
Art der Vorlesung	SWS	Leistungspunkte:	Verantwortung	
Bachelor und Master	2+2	5	IAZD	

Regelmäßigkeit: alle 2 Jahre, Sommersemester

Inhalt: Vertiefung der analytischen Zahlentheorie.

Mögliche Themen umfassen den Satz von Bombieri-Vinogradov, Taubersche Sätze, Normalordnungen and Werteverteilung von additiven und multiplikativen Funktionen, Anwendungen der Selberg-Delange- und der Sattelpunktmethode.

Grundlegende Literatur:

- [1] J. Brüdern, Einführung in die analytische Zahlentheorie, Springer-Verlag, 1995.
- [2] H. Davenport, Multiplicative Number Theory, Springer-Verlag, 2000.
- [3] H.L. Montgomery and R.C. Vaughan, Multiplicative Number Theory, I. Classical Theory, Cambridge University Press, 2007.
- [4] G. Tenenbaum, Introduction to analytic and probabilistic number theory, Cambridge University Press, 1995.

Empfohlene Vorkenntnisse: Funktionentheorie, Analytische Zahlentheorie I

Bemerkung:

Jeweils kombinierbar mit Vorlesungen der Algebra, Zahlentheorie, Diskrete Mathematik (insbesondere: Analytische Zahlentheorie I) oder Analysis oder anderen Vorlesungen in Absprache mit der/m Prüfenden

- Spezialisierung Bachelor Algebra, Zahlentheorie, Diskrete Mathematik
- Wahlmodul Bereich Reine Mathematik im Master Mathematik

Arithmetische Geometrie I				R
Art der Vorlesung	SWS	Leistungspunkte: 10	Verantwortung	
Bachelor und Master	4+2		IAZD	
Regelmäßigkeit: alle 2 Jahre, Wi	ntersemester			
Inhalt: Einführende Vorlesung in die arit Kurven über endlichen k Elliptische Kurven Grundlegende Literatur: Lorenzini: An Invitation Silverman: The Arithme	Körpern n to Arithmetio	: Geometry	folgenden Themen:	
Empfohlene Vorkenntnisse: Alge	ebra II			
Modulzugehörigkeit:				
 Spezialisierung Bachelor 	Algebra, Zahlo	entheorie, Diskrete Mather	natik	

Arithmetische Geometrie II				
Art der Vorlesung	SWS	Leistungspunkte: 10	Verantwortung	
Master	4+2		IAZD	
Regelmäßigkeit: alle zwei Jahre, Sommersemester				

Vertiefende Vorlesung über einen der folgenden Themenbereiche:

Wahlmodul Bereich Reine Mathematik im Master Mathematik

- Modulformen und Modularität
- diophantische Geometrie
- arithmetische Fundamentalgruppen

Grundlegende Literatur:

Diamond, Shurman: A first course in modular forms

Hindry, Silverman: *Diophantine Geometry*

Empfohlene Vorkenntnisse: Arithmetische Geometrie I oder Algebraische Geometrie

- Spezialisierung Bachelor Algebra, Zahlentheorie, Diskrete Mathematik
- Wahlmodul Bereich Reine Mathematik im Master Mathematik

Darstellungstheorie				R
Art der Vorlesung	SWS	Leistungspunkte: 10	Verantwortung	
Bachelor und Master	4+2		IAZD	
Regelmäßigkeit: alle zwei Jahre	Wintersemest	er		
 Moduln und Darstellung Kompositionsreihen, unz Wedderburn-Zerlegung, Grundlagen der Charakt 	kt auf Gruppen en von Gruppen erlegbare Mod Satz von Masc ertheorie endlic tätsrelationen, en) epresentations of : Algebra	algebren und Charakteren. n und Algebren (einfache u uln, halbeinfache Algebren hke) cher Gruppen (irreduzible C Berechnung von Charakter	Zentrale Themenbereiche sund halbeinfache Moduln, Jacobson-Radikal, Artin-Charaktere, inneres Produkt trafeln, Tensorprodukte und Cambridge University Press,	für
· -				
Modulzugehörigkeit:Spezialisierung BachelorWahlmodul Bereich Reir		ntheorie, Diskrete Mathem im Master Mathematik	natik	

Darstellungstheorie symmetrischer Gruppen				
Art der Vorlesung	SWS	Leistungspunkte: 10	Verantwortung	
Bachelor und Master	4+2		IAZD	
Regelmäßigkeit: alle zwei Jahre, Wintersemester				

Inhalt: Es werden Themen der gewöhnlichen und modularen Darstellungstheorie

symmetrischer Gruppen und die zugehörige Kombinatorik behandelt, insbesondere:

- Klassifikation und Eigenschaften der irreduziblen Charaktere der S_n
- symmetrische Funktionen
- Permutationsmoduln und Specht-Moduln
- Darstellungen in positiver Charakteristik: einfache Moduln und die Zerlegung von Specht-Moduln

Grundlegende Literatur:

G. James, A. Kerber: The Representation Theory of the Symmetric	Group
---	-------

B. Sagan: The Symmetric Group

R. Stanley: *Enumerative Combinatorics II*

Empfohlene Vorkenntnisse: Darstellungstheorie ist erforderlich, Gruppen und ihre Darstellungen ist

wünschenswert

Modulzugehörigkeit:

- Spezialisierung Bachelor Algebra, Zahlentheorie, Diskrete Mathematik
- Wahlmodul Bereich Reine Mathematik im Master Mathematik

Enumerative Kombinatorik				R
Art der Vorlesung	SWS	Leistungspunkte: 10	Verantwortung	
Bachelor und Master	4+2		IAZD	

Regelmäßigkeit: unregelmäßig

Inhalt:

- erzeugende Funktionen für gewichtete kombinatorische Objekte
- bijektive Kombinatorik
- konstruktive Kombinatorik

Grundlegende Literatur:

R. Stanley: Enumerative Combinatorics I, II

D. Stanton, D. White: *Constructive Combinatorics*

Empfohlene Vorkenntnisse: Algebra I

- Spezialisierung Bachelor Algebra, Zahlentheorie, Diskrete Mathematik
- Wahlmodul Bereich Reine Mathematik im Master Mathematik

Art der Vorlesung	SWS	Leistungspunkte: 10	Verantwortung	R
Bachelor und Master	4+2		IAZD	
Regelmäßigkeit: alle 2 Jahre, So	mmersemester			
Satz von Mackey, Charal Struktur von Gruppen: S Modulare Darstellungsth Induzierte Darstellungen Grundlegende Literatur:	ndere: olexen) Charaki ktergrade und (ylow-Sätze, au eorie: Unzerleg , Zerlegungszal	tertheorie: induzierte Chara Charakterwerte flösbare Gruppen, Burnside Jbare Darstellungen, projek nlen, Blöcke von Darstellun	aktere, Frobenius-Reziprozita escherp^aq^b-Satz etive und einfache Moduln,	ät,
G. James, M. Liebeck: <i>Re</i> H. Nagao, Y. Tsushima: <i>F</i>		•		
Empfohlene Vorkenntnisse: Alge	ebra II, Darstell	ungstheorie		
Modulzugehörigkeit:				
	_	ntheorie, Diskrete Mathem im Master Mathematik	atik	

Homologische Algebra				R
Art der Vorlesung	SWS	Leistungspunkte: 10	Verantwortung	
Master	4+2		IAZD	
Regelmäßigkeit: unregelmäßig				
Inhalt: Exakte Sequenzen; Homomorphismengruppen; Tensorprodukte von Moduln über Ringen; projektive, injektive und flache Moduln; Kategorien und Funktoren; (Ko-)Kettenkomplexe, Homologie und Kohomologie von Komplexen; projektive und injektive Auflösungen; derivierte Funktoren; Ext-Funktoren, Tor-Funktoren und Anwendungen				
Grundlegende Literatur: Rotman: An Introduction to Homological Algebra (Second Edition) Weibel: An introduction to homological algebra				
Empfohlene Vorkenntnisse: Algebra II				
Modulzugehörigkeit:				
Wahlmodul Bereich Rein	e Mathematik	im Master Mathematik		

	T	1	Τ	R
Art der Vorlesung	SWS	Leistungspunkte: 10	Verantwortung	
Bachelor und Master	4+2		IAZD/IAG	
Regelmäßigkeit: unregelmäßig				
Inhalt:				
 Topologische Räume, s 	tetige Abbil	dungen		
 Zusammenhang, Trenn 	ungsaxiome	<u> </u>		
 Kompaktheit 				
 Konstruktionen (insbesonstruktionen) 	s. Produkte, (Quotienten)		
 Homotopie von Abbild 	-	,		
 Fundamentalgruppen 	J			
 Überlagerungen 				
Grundlegende Literatur:				
K. Jänich: Topologie				
G. Laures, M. Szymik:				
B.v. Querenburg: Meng	•	, ,		
R. Stöcker, H. Zieschar	ıg: Algebrais	sche Topologie		
Empfohlene Vorkenntnisse: Ana	lysis I und II			
Modulzugehörigkeit:				
 Spezialisierung Bachelor 	Algebra, Zah	lentheorie, Diskrete Mathe	matik	
Walder al I Decidal Dela	a Mathamati	k im Master Mathematik		

B.2 Algebraische Geometrie

Algebraische Flächen				
Art der Vorlesung	SWS	Leistungspunkte:	Verantwortung	
Master	***	***	IAG	

Regelmäßigkeit: alle zwei bis drei Jahre, Sommersemester

Inhalt:

- birationale Abbildungen zwischen Flächen
- Schnitttheorie
- Kodaira Klassifikation

Grundlegende Literatur:

Beauville: *Complex algebraic surfaces*, CUP, 1983.

Empfohlene Vorkenntnisse: Algebraische Geometrie, hilfreich: Algebra II

Modulzugehörigkeit:

Wahlmodul Bereich Reine Mathematik im Master Mathematik

Algebraische Geometrie I				R
Art der Vorlesung	SWS	Leistungspunkte: 10	Verantwortung	
Bachelor, Master	4+2		IAG	

Regelmäßigkeit: jährlich, Wintersemester

Inhalt:

- affine und projektive Varietäten
- Morphismen und birationale Abbildungen
- Dimension, Grad, Glattheit, Singularitäten
- Garben und Schemata

Empfohlene Vorkenntnisse: Algebra I; hilfreich: Algebra II, Funktionentheorie

- Spezialisierung Bachelor Geometrie
- Wahlmodul Bereich Reine Mathematik im Master Mathematik

Algebraische Geometrie II				R
Art der Vorlesung	SWS	Leistungspunkte: 10	Verantwortung	
Bachelor, Master	4+2		IAG	

Regelmäßigkeit: jährlich, Sommersemester

Inhalt:

Es werden Themen der algebraischen Geometrie vertieft; mögliche Schwerpunkte:

- Kurventheorie
- Schemata
- Hilbert-Polynom
- Garbenkohomologie
- Schnitttheorie
- Divisoren

Modulzugehörigkeit:

- Spezialisierung Bachelor Geometrie
- Wahlmodul Bereich Reine Mathematik im Master Mathematik

Algebraische Topologie				R
Art der Vorlesung	SWS	Leistungspunkte:	Verantwortung	
Bachelor und Master	4+2	10	IAG	

Regelmäßigkeit: unregelmäßig

Inhalt:

- Homologietheorie, singuläre Homologie, Zellenkomplex
- Kohomologietheorie
- Poincaré Dualität

Empfohlene Vorkenntnisse: Algebra I, hilfreich: Algebra II

- Spezialisierung Bachelor Geometrie
- Spezialisierung Bachelor Algebra, Zahlentheorie, Diskrete Mathematik
- Wahlmodul Bereich Reine Mathematik im Master Mathematik

Algorithmische Kommutative	Algebra			R
Art der Vorlesung	SWS	Leistungspunkte: 10	Verantwortung	
Bachelor und Master	4+2		IAG	

Inhalt:

- polynomiale Gleichungssysteme
- Gröbner Basen, Syzygien, freie Auflösungen
- Dimension, ganzer Abschluß, Primärzerlegung

Empfohlene Vorkenntnisse: Algebra I; hilfreich: Algebra II

Modulzugehörigkeit:

- Spezialisierung Bachelor Algebra, Zahlentheorie, Diskrete Mathematik
- Spezialisierung Bachelor Geometrie
- Wahlmodul Bereich Reine Mathematik im Master Mathematik

Codierungstheorie				R
Art der Vorlesung	SWS	Leistungspunkte:	Verantwortung	
Bachelor und Master	4+2 (2+1)	10 (5)	IAG	
D 1 1101 1 11 1 1101				

Regelmäßigkeit: unregelmäßig

Inhalt:

- lineare Codes
- spezielle gute Codes
- Decodierung
- zyklische Codes

Empfohlene Vorkenntnisse: Algebra I

- Spezialisierung Bachelor Algebra, Zahlentheorie, Diskrete Mathematik
- Spezialisierung Bachelor Geometrie
- Wahlmodul Bereich Reine Mathematik im Master Mathematik

Differentialtopologie				R
Art der Vorlesung	SWS	Leistungspunkte:	Verantwortung:	
Master	4+2	10	IAG	
D 1 "O' 1 '(1 "O'				

Inhalt:

- differenzierbare Mannigfaltigkeiten und Abbildungen
- Tangentialbündel, Vektorfelder
- dynamische Systeme
- Morsetheorie

Empfohlene Vorkenntnisse: Analysis III

Modulzugehörigkeit:

Wahlmodul Bereich Reine Mathematik im Master Mathematik

Ebene Algebraische Kurven				R
Art der Vorlesung	SWS	Leistungspunkte:	Verantwortung	
Bachelor und Master,	2+1	5	IAG	
auch Lehramt				

Regelmäßigkeit: unregelmäßig

Inhalt:

- Schnittverhalten ebener algebraischer Kurven, Satz von Bezout
- Tangenten, Wendepunkte, Glattheit und Singularitäten
- polare Kurve, Hesse-Kurve, duale Kurve, Plückerformeln

Empfohlene Vorkenntnisse: Algebra I

- Spezialisierung Bachelor Geometrie
- Wahlmodul Bereich Reine Mathematik im Master Mathematik

Gitter und Codes				R
Art der Vorlesung	SWS	Leistungspunkte:	Verantwortung	
Bachelor und Master	4+2	10	IAG	
Danalus Ointaite un va valus ölia	•			

Inhalt:

- ganzzahlige Gitter
- lineare Codes
- Gewichtszähler und Thetafunktionen

Grundlegende Literatur:

W. Ebeling: *Lattices and Codes*, 3. Auflage, Springer, 2013.

Empfohlene Vorkenntnisse: Algebra I, Funktionentheorie

Modulzugehörigkeit:

- Spezialisierung Bachelor Geometrie
- Spezialisierung Bachelor Algebra, Zahlentheorie, Diskrete Mathematik
- Wahlmodul Bereich Reine Mathematik im Master Mathematik

Modulräume				R
Art der Vorlesung	SWS	Leistungspunkte:	Verantwortung	
Master	***	***	IAG	

Regelmäßigkeit: alle 2-3 Jahre, unregelmäßig

Inhalt:

- Modulprobleme, feine und grobe Modulräume
- Konstruktion von Modulräumen, geometrische Invariantentheorie
- Beispiele von Modulräumen, insbesondere Modulraum algebraischer Kurven

Empfohlene Vorkenntnisse: Algebra II, Algebraische Geometrie

Modulzugehörigkeit:

Wahlmodul Bereich Reine Mathematik im Master Mathematik

Singularitäten				R
Art der Vorlesung	SWS	Leistungspunkte:	Verantwortung	
Master	4+2	10	IAG	
D 1 "0" 1 "0"				

Inhalt:

- holomorphe Funktionen mehrerer Veränderlicher
- analytische Mengenkeime
- Entfaltungen und Deformationen
- Klassifikation von Singularitäten

Grundlegende Literatur:

W. Ebeling: Funktionentheorie, Differentialtopologie und Singularitäten, Vieweg, 2001.

Empfohlene Vorkenntnisse: Algebra II

Modulzugehörigkeit:

• Wahlmodul Bereich Reine Mathematik im Master Mathematik

B.3 Analysis

Funktionalanalysis				R/A
Art der Vorlesung	SWS	Leistungspunkte: 10	Verantwortung	
Bachelor und Master	4+2		Bauer, Escher, Schrohe, V	Valker

Regelmäßigkeit: jährlich

Inhalt:

- Satz von Baire
- Satz von Hahn-Banach, Konvexität
- Prinzip der gleichmäßigen Beschränktheit
- Satz von der offenen Abbildung, Graphensatz
- lineare Operatoren im Hilbertraum
- kompakte Operatoren
- unbeschränkte Operatoren

Empfohlene Vorkenntnisse: Analysis I-III, Lineare Algebra I

Modulzugehörigkeit:

- Spezialisierung Bachelor Analysis
- Wahlmodul Bereich Reine Mathematik im Master Mathematik
- Wahlmodul Bereich Angewandte Mathematik im Master Mathematik

Indextheorie				R
Art der Vorlesung	SWS	Leistungspunkte:	Verantwortung	
Bachelor und Master	2+1	5	Schrohe	

Regelmäßigkeit: unregelmäßig

Inhalt:

- Fredholmoperatoren auf Banachräumen
- Spektraltheorie kompakter Operatoren und die Fredholm-Alternative
- die Komponenten der Fredholm-Operatoren auf Hilberträumen
- Toeplitz-Operatoren und deren Index
- Indexberechnung mittels der Operatorspur
- Pseudodifferentialoperatoren
- Fedosovs Indexformel

Empfohlene Vorkenntnisse: Analysis I-III, Lineare Algebra I, Funktionalanalysis

- Spezialisierung Bachelor Analysis
- Wahlmodul Bereich Reine Mathematik im Master Mathematik

Pseudodifferentialoperatoren				R/A
Art der Vorlesung	SWS	Leistungspunkte:	Verantwortung	
Bachelor und Master	2+1	5	Bauer, Escher, Schrohe, V	Valker
D I "O' . I . '(I "O' .				

Inhalt:

- Fouriertransformation,
- temperierte Distributionen,
- Sobolevräume,
- Oszillatorintegrale,
- Symbolklassen,
- Stetigkeitseigenschaften und Kalkül,
- Elliptizität und Parametrixkonstruktion,
- Operatoren auf Mannigfaltigkeiten,
- Wellenfrontmenge

Empfohlene Vorkenntnisse: Analysis I-III, Lineare Algebra I, Funktionalanalysis

- Spezialisierung Bachelor Analysis
- Wahlmodul Bereich Reine Mathematik im Master Mathematik
- Wahlmodul Bereich Angewandte Mathematik im Master Mathematik

B.4 Angewandte Analysis

Halbgruppen und Evolutio	nsgleichungen			R/A
Art der Vorlesung	SWS	Leistungspunkte: 10	Verantwortung	
Bachelor und Master	4+2		Escher, Walker	
	112		Escrici, Warker	

Regelmäßigkeit: alle ein bis zwei Jahre

Inhalt:

- abgeschlossene Operatoren in Banachräumen
- stark stetige und analytische Halbgruppen
- Generatoren
- Charakterisierungssätze
- semilineare Cauchy Probleme

Empfohlene Vorkenntnisse: Analysis I-III, Lineare Algebra I und II

Modulzugehörigkeit:

- Spezialisierung Bachelor Analysis
- Wahlmodul Bereich Reine Mathematik im Master Mathematik
- Wahlmodul Bereich Angewandte Mathematik im Master Mathematik

Interpolationstheorie und A	Anwendungen			R/A
Art der Vorlesung	SWS	Leistungspunkte: 10	Verantwortung	
Bachelor und Master	4+2		Escher, Walker	
D 1 "0" 1 "0"				

Regelmäßigkeit: unregelmäßig

Inhalt:

- reelle und komplexe Interpolation
- Struktursätze (Reiteration, Dualität)
- Interpolation von Lebesgue- und Sobolevräumen
- gebrochene Potenzen
- Interpolationstheorie elliptischer Randwertprobleme
- Anwendungen auf Halbgruppentheorie

Empfohlene Vorkenntnisse: Halbgruppen und Evolutionsgleichungen oder Funktionalanalysis

- Spezialisierung Bachelor Analysis
- Wahlmodul Bereich Reine Mathematik im Master Mathematik
- Wahlmodul Bereich Angewandte Mathematik im Master Mathematik

Nichtlineare Funktionalanaly	sis			R/A
Art der Vorlesung	SWS	Leistungspunkte: 10	Verantwortung	
Bachelor und Master	4+2		Escher, Walker	
Regelmäßigkeit: alle ein bis zwei Jahre				

- implizites Funktionentheorem in Banachräumen
- Abbildungsgrad
- Verzweigungstheorie
- monotone Operatoren

Empfohlene Vorkenntnisse: Analysis I-III, Lineare Algebra I und II, Funktionalanalysis

Modulzugehörigkeit:

- Spezialisierung Bachelor Analysis
- Wahlmodul Bereich Reine Mathematik im Master Mathematik
- Wahlmodul Bereich Angewandte Mathematik im Master Mathematik

Partielle Differentialgleich	ungen			R/A
Art der Vorlesung	SWS	Leistungspunkte: 10	Verantwortung	
Bachelor und Master	4+2		Bauer, Escher, Schrohe, Wa	alker
Regelmäßigkeit: jährlich				

Inhalt:

- Charakteristikenmethode
- Distributionen
- Laplace-Gleichung, Maximumsprinzipien
- Sobolevräume
- Variationsmethoden,
- Fouriertransformation
- Wellengleichung
- Wärmeleitungsgleichung

Empfohlene Vorkenntnisse: Analysis I-III, Lineare Algebra I und II

- Spezialisierung Bachelor Analysis
- Wahlmodul Bereich Reine Mathematik im Master Mathematik
- Wahlmodul Bereich Angewandte Mathematik im Master Mathematik

Nichtlineare partielle Differer	ntialgleichunge	en		R/A
Art der Vorlesung	SWS	Leistungspunkte: 10	Verantwortung	
Master	4+2		Escher, Walker	

Inhalt:

- nichtlineare elliptische und parabolische Gleichungen
- Fixpunktmethoden
- Variationsmethoden
- Kompaktheitsmethoden

Empfohlene Vorkenntnisse: Partielle Differentialgleichungen I

Modulzugehörigkeit:

- Spezialisierung Bachelor Analysis
- Wahlmodul Bereich Reine Mathematik im Master Mathematik
- Wahlmodul Bereich Angewandte Mathematik im Master Mathematik

Qualitative Theorie gewö	ihnlicher Differe	ntialgleichungen		R/A
Art der Vorlesung	SWS	Leistungspunkte: 10	Verantwortung	
Bachelor und Master	4+2		Escher, Walker	
Danalas "Otalas '4. '	-	<u> </u>		

Regelmäßigkeit: jährlich

Inhalt:

- Theorie dynamischer Systeme,
- Invarianz,
- Limesmengen,
- Stabilität, Linearisierungen,
- periodische Lösungen

Empfohlene Vorkenntnisse: Analysis I-III, Lineare Algebra I und II

- Spezialisierung Bachelor Analysis
- Wahlmodul Bereich Reine Mathematik im Master Mathematik
- Wahlmodul Bereich Angewandte Mathematik im Master Mathematik

B.5 Numerische Mathematik und Optimierung

Adaptive Finite Element Methoden

SWS

2+1

Regelmäßigkeit: alle zwei bis drei Jahre

Inhalt:

- Adaptive Gitterverfeinerung f
 ür FEM
- A posteriori Fehleranalysis
- Fehlerschätzer: (u.a. residuale)
- Konvergenz

Grundlegende Literatur:

- Ainsworth/Oden: *A posteriori error estimation in finite element analysis.* Wiley 2000.
- Nochetto/Siebert/Veeser: *Theory of adaptive finite element methods: an introduction.* In: Multiscale, nonlinear and adaptive approximation, 409–542, Springer, 2009.

Empfohlene Vorkenntnisse: Numerische Mathematik I und Numerik Partieller Differentialgleichungen

Modulzugehörigkeit:

- Spezialisierung Bachelor Numerik
- Wahlmodul Bereich Angewandte Mathematik im Master Mathematik

hp-Finite Element Methoden				Α
Art der Vorlesung	SWS	Leistungspunkte:	Verantwortung	
Bachelor und Master	2+1	5	IfAM	

Regelmäßigkeit: alle zwei bis drei Jahre

Inhalt:

- Wahl der Basisfunktionen/ Orthogonale Polynome
- Assemblierung: Sum factorization
- Löser
- Konvergenz: Beweis der exponentiellen Konvergenz

Grundlegende Literatur:

Schwab: *p- and hp-finite element methods.* Clarendon 1998.

Empfohlene Vorkenntnisse: Numerische Mathematik I und Numerik Partieller Differentialgleichungen

- Spezialisierung Bachelor Numerik
- Wahlmodul Bereich Angewandte Mathematik im Master Mathematik

Lineare Optimierung				Α
Art der Vorlesung	SWS	Leistungspunkte:	Verantwortung	
Bachelor und Master	2+1	5	Steinbach	

Regelmäßigkeit: regelmäßig alle 2 -3 Jahre

Inhalt:

- Simplexmethode
- Polyedertheorie
- Alternativsätze
- Dualität

Grundlegende Literatur:

U. Chvátal: Linear Programming

Empfohlene Vorkenntnisse: Numerische Mathematik I, Algorithmisches Programmieren

Modulzugehörigkeit:

- Spezialisierung Bachelor Numerik
- Wahlmodul Bereich Angewandte Mathematik im Master Mathematik

Multigrid und Gebietszerlegung				Α
Art der Vorlesung	SWS	Leistungspunkte:	Verantwortung	
Bachelor und Master	2+1	5	IfAM	

Regelmäßigkeit: alle zwei bis drei Jahre

Inhalt:

- vorkonditionierte Iterationsverfahren (Richardson, Jacobi)
- Multigrid (für Finite-Differenzen-Verfahren, Finite Elemente)
- Multilevel-Methoden (Additiv- und Multiplikativ-Schwarz-Verfahren)
- Gebietszerlegungsmethoden (alternierendes Schwarz-Verfahren)

Grundlegende Literatur:

Toselli/Widlund: *Domain decomposition methods—algorithms and theory.* Springer, 2005.

Empfohlene Vorkenntnisse: Numerische Mathematik I

- Spezialisierung Bachelor Numerik
- Wahlmodul Bereich Angewandte Mathematik im Master Mathematik

Nichtlineare Optimierung I				
Art der Vorlesung	SWS	Leistungspunkte: 10	Verantwortung	
Bachelor und Master	4+2		Steinbach	
Regelmäßigkeit: regelmäßig alle 2 -3 Jahre				

- Gradientenverfahren, Newton-Verfahren, Line Search, Trust Region
- Theorie der beschränkten Optimierung: KKT-Bedingungen, ...
- Quadratische Optimierung: KKT-Faktorisierungen, Active-Set-Methode
- Maratos-Effekt, Merit-Funktionen, SQP-Methode

Grundlegende Literatur:

J. Nocedal, S. Wright: *Numerical Optimization*, 2. Aufl.

Empfohlene Vorkenntnisse: Numerische Mathematik I und II, Algorithmisches Programmieren

Modulzugehörigkeit:

- Spezialisierung Bachelor Numerik
- Wahlmodul Bereich Angewandte Mathematik im Master Mathematik

Nichtlineare Optimierung II				Α
Art der Vorlesung	SWS	Leistungspunkte 10	Verantwortung	
Bachelor und Master	4+2		Steinbach	
B 1 1101 1 11 1 1101 11				

Regelmäßigkeit: regelmäßig alle 2 -3 Jahre

Inhalt:

- nichtlineare CG-Verfahren
- Techniken für hochdimensionale Modelle
- innere-Punkte-Methoden
- weitere Themen

Grundlegende Literatur:

J. Nocedal, S. Wright: *Numerical Optimization*, 2. Aufl.

Empfohlene Vorkenntnisse: Nichtlineare Optimierung I

- Spezialisierung Bachelor Numerik
- Wahlmodul Bereich Angewandte Mathematik im Master Mathematik

Numerik der Integralgleichungen				А
Art der Vorlesung	SWS	Leistungspunkte:	Verantwortung	
Bachelor und Master	2+1	5	IfAM	
Production of the contraction of				

Inhalt:

- Randintegralgleichungen
- Galerkin-Verfahren bei Randelementmethoden
- adaptive Varianten und Anwendungen in Mechanik und Elektrotechnik
- schnelle Randelementmethoden (Penal-Clustering, H-Matrizen)
- Kopplung von finiten Elementen und Randelementen

Grundlegende Literatur:

Standardliteratur, Vorlesungsskript

Empfohlene Vorkenntnisse: Numerische Mathematik I und Numerik Partieller Differentialgleichungen

Modulzugehörigkeit:

- Spezialisierung Bachelor Numerik
- Wahlmodul Bereich Angewandte Mathematik im Master Mathematik

Numerik für Kontaktprobleme				Α
Art der Vorlesung	SWS	Leistungspunkte:	Verantwortung	
Bachelor und Master	2+1	5	IfAM	
D 1 "0" 1 "0"				

Regelmäßigkeit: unregelmäßig

Inhalt:

- Existenz und Eindeutigkeit für elliptische Kontaktprobleme
- Variationsungleichungen, gemischte Formulierungen
- Penalty Verfahren
- iterative Löser: Uzawa, Semi-Smooth Newton-Verfahren
- Mehrfeldprobleme, Koppelung mit Wärmeleitungsgleichung

Grundlegende Literatur:

Standardliteratur, Vorlesungsskript

Empfohlene Vorkenntnisse: Numerische Mathematik I und Numerik Partieller Differentialgleichungen

- Spezialisierung Bachelor Numerik
- Wahlmodul Bereich Angewandte Mathematik im Master Mathematik

				А
Art der Vorlesung	SWS	Leistungspunkte: 10	Verantwortung	
Bachelor und Master	4+2		IfAM	
Regelmäßigkeit: jährlich			•	

- Galerkin-Verfahren für elliptische Randwertprobleme
- Finite-Element-Räume
- a-posteriori-Fehlerschätzer
- Verfahren für parabolische und hyperbolische Differentialgleichungen

Grundlegende Literatur:

P. Knabner, L. Angermann: Numerik partieller Differentialgleichungen

Empfohlene Vorkenntnisse: Numerische Mathematik I

Modulzugehörigkeit:

- Spezialisierung Bachelor Numerik
- Wahlmodul Bereich Angewandte Mathematik (M.Sc.)

Numerische Methoden der Kontinuumsmechanik				
Art der Vorlesung	SWS	Leistungspunkte: 10	Verantwortung	
Bachelor und Master	4+2		IfAM	

Regelmäßigkeit: alle ein bis zwei Jahre

Inhalt:

- Modellierung: Elastizität und Strömungsmechanik
- Diskretisierung: gemischte Finite Elemente
- Fehlerschätzungen für Stokes

Grundlegende Literatur:

Brezzi/Fortin: Mixed and hybrid finite element methods. Springer 1991

Empfohlene Vorkenntnisse: Numerische Mathematik I und Numerik Partieller Differentialgleichungen

- Spezialisierung Bachelor Numerik
- Wahlmodul Bereich Angewandte Mathematik (M.Sc.)

Numerische Methoden für gekoppelte und nichtlineare Probleme				
Art der Vorlesung SWS Leistungspunkte: 10 Verantwortung			_	
Bachelor und Master 4+2 IfAM				
Regelmäßigkeit: alle drei bis vier Jahre				

- Klassifizierungen in nichtlineare und gekoppelte Probleme
- Regularisierungen, Zeitdiskretisierung, Ortsdiskretisierung
- nichtlineare und lineare Löser
- Adaptivität und inexakte Löser

Grundlegende Literatur:

- Wick: *Numerical methods for nonlinear and coupled PDEs*, Vorlesungsskriptum, available online https://www.ifam.uni-hannover.de/2120.html.
- Glowinski: *Numerical methods for nonlinear variational problems.* Springer 1984.

Empfohlene Vorkenntnisse: Numerische Mathematik I und Numerik Partieller Differentialgleichungen

Modulzugehörigkeit:

- Spezialisierung Bachelor Numerik
- Wahlmodul Bereich Angewandte Mathematik (M.Sc.)

Numerische Methoden für gewöhnliche Differentialgleichungen				
Art der Vorlesung	SWS	Leistungspunkte: 5	Verantwortung	
Bachelor und Master	2+1		IfAM	

Regelmäßigkeit: unregelmäßig

Inhalt:

- Einschrittmethoden
- Numerische Stabilität
- Differentiell-algebraische Gleichungen
- Galerkin-Verfahren
- Schießverfahren
- Variationsmethoden

Grundlegende Literatur:

Rannacher: Einführung in die Numerische Mathematik, Heidelberg University Publishing, 2017.

Empfohlene Vorkenntnisse: Numerische Mathematik I und II

- Spezialisierung Bachelor Numerik
- Wahlmodul Bereich Angewandte Mathematik (M.Sc.)

Optimierung mit partiellen Differentialgleichungen				
Art der Vorlesung	SWS	Leistungspunkte: 5	Verantwortung	
Bachelor und Master	2+1		IfAM	

Inhalt:

- Linear quadratische Optimalsteuerung:
- Existenz und Eindeutigkeit eines Minimums
- adjungierter Zustand
- Diskretisierung und Optimierung: FEM

Grundlegende Literatur:

Troeltzsch: *Optimal control of partial differential equations.* AMS, 2010.

Empfohlene Vorkenntnisse: Numerische Mathematik I und Numerik Partieller Differentialgleichungen

Modulzugehörigkeit:

- Spezialisierung Bachelor Numerik
- Wahlmodul Bereich Angewandte Mathematik (M.Sc.)

Scientific Computing				Α
Art der Vorlesung	SWS	Leistungspunkte: 5	Verantwortung	
Bachelor und Master	2+1		IfAM	
D "0" '4				

Regelmäßigkeit: unregelmäßig

Inhalt:

Numerische Algorithmen und deren Parallelisierung

Grundlegende Literatur:

Bastian: *Lecture notes on parallel solution of large sparse linear system*, Vorlesungsskriptum, IWR Heidelberg, April 2018.

Empfohlene Vorkenntnisse: Numerische Mathematik I und Numerik Partieller Differentialgleichungen

- Spezialisierung Bachelor Numerik
- Wahlmodul Bereich Angewandte Mathematik (M.Sc.)

Unstetige Galerkinverfahren				Α
Art der Vorlesung	SWS	Leistungspunkte: 5	Verantwortung	
Bachelor und Master	2+1		IfAM	

Inhalt:

- Grundkonzepte
- DG für stationäre Advektion (Flüsse/Upwinding)
- DG für Nichtstationäre PDE's 1. Ordnung
- DG für elliptische Aufgaben (SIP)

Grundlegende Literatur:

Ern/di Pietro: *Mathematical aspects of discontinuous Galerkin methods.* Springer 2012.

Empfohlene Vorkenntnisse: Numerische Mathematik I und Numerik Partieller Differentialgleichungen

- Spezialisierung Bachelor Numerik
- Wahlmodul Bereich Angewandte Mathematik (M.Sc.)

B.6 Differentialgeometrie

Analysis auf Mannigfaltigkeit	en			R
Art der Vorlesung	SWS	Leistungspunkte: 10	Verantwortung	
Master	4+2		IDG	
D 1 "O' 1 '(1 "O'				

Regelmäßigkeit: unregelmäßig

Inhalt:

Sobolev-Theorie auf Mannigfaltigkeiten, isoperimetrische Ungleichungen, Laplace-, Cauchy-Riemann- und Dirac-Operatoren, Wärmeleitungskerne, Greensche Funktionen, Vergleichssätze für den Laplace-Operator und Wärmeleitungskern, Volumenwachstum, Harnack-Ungleichungen, Spektraltheorie.

Empfohlene Vorkenntnisse: Differentialgeometrie/Globale Analysis

Modulzugehörigkeit:

• Wahlmodul Bereich Reine Mathematik im Master Mathematik

Eichfeldtheorie				R
Art der Vorlesung	SWS	Leistungspunkte: 10	Verantwortung	
Master	4+2		IDG	
D 1 1101 1 11 1 1101		•	•	

Regelmäßigkeit: unregelmäßig

Inhalt:

Zusammenhänge auf Hauptfaserbündeln und deren Krümmung, Eichtransformationen, Yang-Mills-Funktional und Yang-Mills-Gleichung, selbstduale und invariante Zusammenhänge, nichtminimale Yang-Mills-Zusammenhänge, magnetische Monopole und Wirbel

Empfohlene Vorkenntnisse: Differentialgeometrie/Globale Analysis

Modulzugehörigkeit:

Wahlmodul Bereich Reine Mathematik im Master Mathematik

Klassische Differentialgeomet	rie			R
Art der Vorlesung	SWS	Leistungspunkte: 10	Verantwortung	
Bachelor, Master	4+2		IDG	
Regelmäßigkeit: unregelmäßig	•		•	

- Kurven: Bogenlänge, Krümmung und Torsion, Hauptsatz, Windungszahl, Umlaufzahl, Hopfscher Umlaufsatz, isoperimetrische Ungleichung, Vierscheitelsatz, Frenet-Kurven, Satz von Fenchel
- Flächen: reguläre Flächen, Parameterwechsel, Tangentialraum, Differential, erste Fundamentalform, Orientierbarkeit, Gauß-Abbildung, Weingarten-Abbildung, zweite
- Fundamentalform, Hauptkrümmungen, mittlere Krümmung, Gauß-Krümmung
- Innere und äußere Geometrie: Isometrien, Vektorfelder und kovariante Ableitung, Christoffel-Symbole, Koszul-Formel, Krümmungstensor, Gauß-Gleichungen, TheoremaEgregium, Geodätische, Exponentialabbildung, geodätische Polarkoordinaten, Gauß-Lemma, sphärische und hyperbolische Geometrie

Empfohlene Vorkenntnisse:

Modulzugehörigkeit:

- Spezialisierung Bachelor Geometrie
- Wahlmodul Bereich Reine Mathematik im Master Mathematik

Elliptische Differentialglei	chungen aus d	ler Geometrie		R
Art der Vorlesung	SWS	Leistungspunkte: 10	Verantwortung	
Bachelor, Master	4+2		IDG	

Regelmäßigkeit: unregelmäßig

Inhalt:

- elliptische Differentialgleichungen auf Mannigfaltigkeiten
- harmonische Abbildungen und Schnitte in Vektorraumbündeln
- Minimalflächen und das Bernstein-Problem
- Yamabe-Problem
- Mannigfaltigkeiten vorgeschriebener Krümmung
- Yang-Mills-Gleichungen
- Existenz- und Eindeutigkeitsfragen
- Regularitätstheorie

Empfohlene Vorkenntnisse:

- Spezialisierung Bachelor Geometrie
- Wahlmodul Bereich Reine Mathematik im Master Mathematik

Geometrische Evolutions	gleichungen			R
Art der Vorlesung	SWS	Leistungspunkte: 10	Verantwortung	•
Master	4+2		IDG	
Regelmäßigkeit: unregelmä	ißig	·		

Parabolische Differentialgleichungen auf Mannigfaltigkeiten, Variationsprobleme,

Wärmeleitungsgleichung, mittlerer Krümmungsfluss, Ricci-Fluss, harmonischer Wärmefluss, Yamabe- und Yang-Mills-Flüsse, Fragen zur Langzeitexistenz und Konvergenz, Maximumprinzipien für Tensoren, geometrische Harnack-Ungleichungen

Modulzugehörigkeit:

Wahlmodul Bereich Reine Mathematik im Master Mathematik

Komplexe Differentialgeomet	rie			R
Art der Vorlesung	SWS	Leistungspunkte: 10	Verantwortung	
Bachelor, Master	4+2		IDG	
Regelmäßigkeit: alle ein his drei	John Winters	emester	•	

Regelmäßigkeit: alle ein bis drei Jahre, Wintersemester

Inhalt:

Komplexe Mannigfaltigkeiten, fast komplexe Strukturen, Nijenhuis-Tensor und Integrabilität, fast hermitesche Mannigfaltigkeiten, Klassifikation nach Gray-Hervella, Kähler-Mannigfaltigkeiten, Dolbeault-Operatoren, Zerlegungssatz von Dolbeault, Hodge-Zahlen, Serre-Dualität, Chern-Klassen, -Formen und - Zahlen, Satz von Gauß-Bonnet-Chern, Calabi-Vermutung und der Beweis von Yau, Calabi-Yau-Mannigfaltigkeiten

Empfohlene Vorkenntnisse: Differentialgeometrie/Globale Analysis, Funktionentheorie

- Spezialisierung Bachelor Geometrie
- Wahlmodul Bereich Reine Mathematik im Master Mathematik

Konforme Geometrie				R
Art der Vorlesung	SWS	Leistungspunkte: 10	Verantwortung	
Bachelor, Master	4+2		IDG	
D I O' . I ' (I O' .	-			

Inhalt:

Konforme Abbildungen, stereographische und Mercator-Projektion, konforme Gruppe des euklidischen Raumes und der Sphäre, der Satz von Liouville, Möbius-Transformationen und deren Klassifikation, Beziehungen zur projektiven und hyperbolischen Geometrie, Fuchssche und Kleinsche Gruppen, konforme Geometrie von Flächen, Uniformisierung

Empfohlene Vorkenntnisse:

Modulzugehörigkeit:

- Spezialisierung Bachelor Geometrie
- Wahlmodul Bereich Reine Mathematik im Master Mathematik

Riemannsche Geometrie				R
Art der Vorlesung	SWS	Leistungspunkte: 10	Verantwortung	
Bachelor, Master	4+2		IDG	
Bachelor, Master	4+2		IDG	

Regelmäßigkeit: alle ein bis drei Jahre, Wintersemester

Inhalt:

Riemannsche Metriken, Geodäten, Exponentialabbildung, Injektivitätsradius, Krümmung eines Zusammenhangs, erste und zweite Variation der Energie einer Kurve, Existenz geschlossener Geodäten, Satz von Synge, konjugierte Punkte, Jacobi-Felder, Vergleichssätze von Rauch, symmetrische und lokal symmetrische Räume

Empfohlene Vorkenntnisse: : Differentialgeometrie/Globale Analysis,

- Spezialisierung Bachelor Geometrie
- Wahlmodul Bereich Reine Mathematik im Master Mathematik

Spin-Geometrie				R
Art der Vorlesung	SWS	Leistungspunkte: 10	Verantwortung	
Bachelor, Master	4+2		IDG	
D 1 1101 1 14 1 101				

Inhalt:

Clifford-Algebra, Spin-Gruppe, Spin-Darstellung, Clifford-Multiplikation, Spin-Strukturen und Spinor-Bündel, Dirac-Operator, Lichnerowicz-Formel und Eigenwertabschätzungen, Killing- und Twistor-Spinoren

Empfohlene Vorkenntnisse:

Modulzugehörigkeit:

- Spezialisierung Bachelor Geometrie
- Wahlmodul Bereich Reine Mathematik im Master Mathematik

Symplektische Geometr	rie			R
Art der Vorlesung	SWS	Leistungspunkte: 10	Verantwortung	•
Bachelor, Master	4+2		IDG	
Regelmäßigkeit: unregelm	näßin		•	

Regelmäßigkeit: unregelmäßig

Inhalt:

Symplektische Vektorräume, symplektische und Lagrange-Unterräume, symplektische Basis, symplektische Mannigfaltigkeiten, Kotangentialbündel und koadjungierte Orbits als symplektische Mannigfaltigkeiten, Mosers Trick und der Satz von Darboux, Hamilton-Vektorfelder und Poisson-Klammer, Hamiltonsche Wirkungen und Impulsabbildung, Kapazitäten, pseudoholomorphe Kurven, Modelle der klassischen Mechanik, Legendre-Transformation, symplektischeHodge-Theorie, symplektische Zusammenhänge

Empfohlene Vorkenntnisse:

- Spezialisierung Bachelor Geometrie
- Wahlmodul Bereich Reine Mathematik im Master Mathematik

Transformationsgruppen				R
Art der Vorlesung	SWS	Leistungspunkte: 10	Verantwortung	
Bachelor, Master	4+2		IDG	
Pagalmä@igkaitu unragalmä@ia		•	•	

Inhalt

Lie-Gruppen, Lie-Algebra, Exponentialabbildung, Struktur nilpotenter, auflösbarer und halbeinfacher Lie-Algebren, Gruppenwirkungen, G-Strukturen, Kleinsches Erlanger Programm, homogene Räume, fundamentale Vektorfelder, adjungierte Darstellungen, reduktive homogene Räume, symmetrische Räume und deren Klassifikation

Empfohlene Vorkenntnisse:

- Spezialisierung Bachelor Geometrie
- Wahlmodul Bereich Reine Mathematik im Master Mathematik

B.7 Mathematische Stochastik

Asymptotische Statistik				Α
Art der Vorlesung	SWS	Leistungspunkte: 10	Verantwortung	
Bachelor und Master	4+2		IfMS	

Regelmäßigkeit: unregelmäßig

Inhalt:

- benachbarte Verteilungen
- lokale asymptotische Normalität
- Limesexperimente
- asymptotisch optimale Tests
- asymptotische Effizienz von Schätz- und Testverfahren

GrundlegendeLiteratur:

☐ Van der Vaart: Asymptotic Statistics, Cambridge University Press, Cambridge, 1998.

Empfohlene Vorkenntnisse: Mathematische Stochastik II

Modulzugehörigkeit:

- Spezialisierung Bachelor Stochastik
- Wahlmodul Bereich Angewandte Mathematik im Master Mathematik

Finanzmathematik in diskreter Zeit				
Art der Vorlesung	SWS	Leistungspunkte: 10	Verantwortung	
Bachelor und Master	4+2		Weber	

Regelmäßigkeit: jährlich

Inhalt:

- Arbitragetheorie
- Präferenzen
- Optimalität und Gleichgewicht
- Risikomaße

Grundlegende Literatur:

H. Föllmer& A. Schied: Stochastic Finance, de Gruyter, Berlin/New York, 2004.

Empfohlene Vorkenntnisse: Mathematische Stochastik II

- Spezialisierung Bachelor Stochastik
- Wahlmodul Bereich Angewandte Mathematik im Master Mathematik

Finanzmathematik in stetiger Zeit				Α
Art der Vorlesung	SWS	Leistungspunkte: 10	Verantwortung	
Bachelor und Master	4+2		Weber	
Regelmäßigkeit: jährlich				

- Einführung in die stochastische Analysis
- Finanzmathematische Anwendung in zeitstetigen Finanzmarktmodellen: Bewertung und Absicherung von Finanzderivaten (Aktien-, Zins- und Kreditderivate), Portfoliooptimierung

Grundlegende Literatur:

M. Musiela & R. Rutkowski: Martingale Methods in Financial Modelling, Springer, 2005.

Empfohlene Vorkenntnisse: Mathematische Stochastik II, Finanzmathematik in diskreter Zeit, evtl. Stochastische Analysis

Modulzugehörigkeit:

- Spezialisierung Bachelor Stochastik
- Wahlmodul Bereich Angewandte Mathematik im Master Mathematik

Finanzmathematik: Aktuelle Entwicklungen in der Finanzmathematik					
Art der Vorlesung	SWS	Leistungspunkte: 10	Verantwortung		
Bachelor und Master	Bachelor und Master 4+2 Weber				
D 1 "O' 1 '(1 "C	· ·		•		

Regelmäßigkeit: unregelmäßig

Inhalt:

• aktuelle Entwicklungen in der Finanzmathematik

Grundlegende Literatur:

- M. Musiela & R. Rutkowski: *Martingale Methods in Financial Modelling*, Springer, 2005.
- H. Föllmer & A. Schied: Stochastic Finance, de Gruyter, Berlin/New York, 2004.

Empfohlene Vorkenntnisse: Mathematische Stochastik II, Finanzmathematik in diskreter Zeit, Finanzmathematik in stetiger Zeit

- Spezialisierung Bachelor Stochastik
- Wahlmodul Bereich Angewandte Mathematik im Master Mathematik

etten	4
ung SWS Leistungspunkte: Verantwortung	
Master 2+1 5 Weber	
3 1	tung

Inhalt:

Markov-Ketten sind stochastische Prozesse, bei denen die zukünftige Entwicklung von der bisherigen Historie nur über den letzten Zustand abhängt (Gedächtnislosigkeit). Sie spielen in zahlreichen Anwendungen, beispielsweise bei Bedienungssystemen, bei Kommunikationsnetzwerken, bei der Analyse von Algorithmen und bei der kombinatorischen Optimierung eine große Rolle. Da nur endliche oder abzählbar unendliche Zustandsräume betrachtet werden, kommt man weitgehend ohne maßtheoretische Hilfsmittel aus. Die Vorlesung ist auch für Lehramtsstudierende geeignet.

Grundlegende Literatur:

- Bremaud, P.: Markov Chains. Springer, 1999
- Levin, D.A., Peres, Y., Wilmer, E.L.: Markov Chains and Mixing Times
- American Mathematical Society, 2009

Empfohlene Vorkenntnisse: Mathematische Stochastik I

Modulzugehörigkeit:

- Spezialisierung Bachelor Stochastik
- Wahlmodul Bereich Angewandte Mathematik im Master Mathematik

Nichtparametrische Statistik				Α
Art der Vorlesung	SWS	Leistungspunkte: 10	Verantwortung	
Bachelor und Master	4+2		IfMS	

Regelmäßigkeit: unregelmäßig

Inhalt:

- Ordnungs- und Rangstatistiken
- Verteilungsfreie Konfidenz- und Anteilsbereiche
- lokal beste Rangtests
- empirische Verteilungen
- statistische Anpassungstests
- nichtparametrische multivariante Verfahren

GrundlegendeLiteratur:

J. Hajek, Z. Sidak, P. K. Sen: *Theory of Rank Tests*, Academic Press, 1999.

Empfohlene Vorkenntnisse: Mathematische Stochastik II

- Spezialisierung Bachelor Stochastik
- Wahlmodul Bereich Angewandte Mathematik im Master Mathematik

Personenversicherungsm	athematik			А
Art der Vorlesung	SWS	Leistungspunkte:	Verantwortung	
Bachelor und Master	4+2	10	Weber	
Regelmäßigkeit: jährlich	•	·	.	

- Verzinsung
- Zahlungsströme und Deckungskapital
- Differenzen- und Differentialgleichungen
- Hattendorfsches Theorem
- Fondgebundene Policen
- Versicherungen mit stochastischen Zins
- Marktkonsistente Bewertungen

Grundlegende Literatur:

- M. Koller: *Stochastische Modelle in der Lebensversicherungs-mathematik*, Springer, 2000.
- R. Norberg: *Basic Life Insurance Mathematics*, LSE, 2002.

Empfohlene Vorkenntnisse: Mathematische Stochastik II

Modulzugehörigkeit:

- Spezialisierung Bachelor Stochastik
- Wahlmodul Bereich Angewandte Mathematik im Master Mathematik

Schadenversicherungsmathematik				
Art der Vorlesung	SWS	Leistungspunkte: 10	Verantwortung	
Bachelor und Master	4+2		Weber	
- 1 HOLD 1 12 1				

Regelmäßigkeit: jährlich

Inhalt:

- individuelles Modell
- kollektives Modell
- Ruintheorie
- Prämienkalkulation
- Spätschäden
- · Risikoteilung und Rückversicherung

Grundlegende Literatur:

- I. Mack: Schadenversicherungsmathematik, VVW Karlsruhe, 2002.
- L. Schmidt: Versicherungsmathematik, Springer, 2006.

Empfohlene Vorkenntnisse: Mathematische Stochastik II

- Spezialisierung Bachelor Stochastik
- Wahlmodul Bereich Angewandte Mathematik im Master Mathematik

			Α
SWS	Leistungspunkte:	Verantwortung	
2+1	5	IfMS	

Inhalt:

- n-Personenspiel-Normalform
- Gleichgewichtspunkte
- gemischte Erweiterungen
- Zweipersonen-Nullsummenspiele
- Minimax-Sätze und Minimax-Strategien
- Matrix-Spiele
- kooperative Spiele
- Shapley-Wert

GrundlegendeLiteratur:

F. Forgo, J. Szep, F. Szidarovszky: *Introduction to the Theory of Games: Concepts, Methods, Applications*, Kluwer, Dordrecht, 1999.

Empfohlene Vorkenntnisse: Mathematische Stochastik II

Modulzugehörigkeit:

- Spezialisierung Bachelor Stochastik
- Wahlmodul Bereich Angewandte Mathematik im Master Mathematik

Statistische Entscheidungstheorie und Sequentialverfahren				
Art der Vorlesung	SWS	Leistungspunkte: 10	Verantwortung	
Bachelor und Master 4+2 IfMS				
Danalas "O'alas 'As comuna a alas	"O:-			

Regelmäßigkeit: unregelmäßig

Inhalt:

- Entscheidungskerne
- Bayes-Verfahren und Minimax-Verfahren für Schätz- und Testprobleme
- Minimax-Sätze
- optimales Stoppen
- sequentielle Bayes-Verfahren
- sequentielle Likelihood-Quotiententests
- optimale sequentielle Tests

Grundlegende Literatur:

- Irle: Sequentialanalyse: Optimale sequentielle Tests, Teubner, Stuttgart, 1990.
- H. Strasser: *Mathematical Theory of Statistics*, de Gruyter, Berlin, 1985.

Empfohlene Vorkenntnisse: Mathematische Stochastik II

- Spezialisierung Bachelor Stochastik
- Wahlmodul Bereich Angewandte Mathematik im Master Mathematik

Statistische Verfahren				Α
Art der Vorlesung	SWS	Leistungspunkte: 10	Verantwortung	
Bachelor und Master	4+2		Weber	

Inhalt:

- Anpassungstests, Bootstrap, Dicheschätzer, Robuste Verfahren
- Modelle mit Hilfsvariablen: Regression, Varianzanalyse, verallgemeinerte lineare Modelle

GrundlegendeLiteratur:

W. N. Venables und B. D. Ripley: *Modern Applied Statistics with S-Plus*, third edition. Springer, New York, 1999.

Empfohlene Vorkenntnisse: Mathematische Stochastik I und II

Modulzugehörigkeit:

- Spezialisierung Bachelor Stochastik
- Wahlmodul Bereich Angewandte Mathematik im Master Mathematik

Stochastische Analysis				A/R
Art der Vorlesung	SWS	Leistungspunkte:	Verantwortung	
Bachelor und Master	4+2	10	IfMS	
Regelmäßigkeit: jährlich	•	•	•	

Regelmanigkeit: Jahriich.

Inhalt:

- stochastische Prozesse in stetiger Zeit: Brownsche Bewegung, (lokale) Martingale, Semimartingale, Markov'sche Prozesse, Levy-Prozesse
- stochastische Integrale
- Darstellungssätze für Martingale
- Satz von Girsanov und Anwendung
- stochastische Differentialgleichungen
- Anwendungen in der Finanzmathematik

GrundlegendeLiteratur:

- P. Protter: Stochastic Integration and Differential Equations, Springer, 2005
- D. Revuz, M. Yor: Continuous Martingales and Brownian Motion, Springer, 1999.
- L. C. G. Rogers, D. Williams: *Diffusions, Markov Processes and Martingales*, Band 1 und 2, Wiley, New York, 1987, 1994.

Empfohlene Vorkenntnisse: Mathematische Stochastik II

- Spezialisierung Bachelor Stochastik
- Wahlmodul Bereich Angewandte Mathematik im Master Mathematik

Stochastische Methoden des Operations Research				А
Art der Vorlesung	SWS	Leistungspunkte: 10	Verantwortung	
Bachelor und Master	4+2		IfMS	
Deceleration of the second of	.0.		•	

Inhalt:

- Markov-Ketten
- Martingale
- Erneuerungstheorie
- regenerative Prozesse
- Warteschlangen

Grundlegende Literatur:

Asmussen, S., Applied Probability and Queues, Wiley, New York, 2003.

Empfohlene Vorkenntnisse: Mathematische Stochastik II

- Spezialisierung Bachelor Stochastik
- Wahlmodul Bereich Angewandte Mathematik im Master Mathematik

Stochastische Simulation				Α
Art der Vorlesung	SWS	Leistungspunkte:	Verantwortung	
Bachelor und Master	4+2	10	Weber	

Inhalt:

- Erzeugen und Testen von Pseudozufallszahlen
- Methoden für nicht-uniforme Verteilung
- Varianzreduktion und Simulation seltener Ereignisse
- Monte Carlo-Integration
- MCMC (Markov Chain Monte Carlo)
- Anwendungen in der Kobinatorischen Optimierung, im Operations Research und in der Versicherungs- und Finanzmathematik

Grundlegende Literatur:

- S. Asmussen und Glynn, W. Peter: *Stochachstic Simulation Algorithms and Analysis*, Springer, New York, 2007.
- P. Bratley, B. Fox und L. Schrage: A Guide to Simulation, Springer, New York, 1983.

Empfohlene Vorkenntnisse: Mathematische Stochastik I und II

Modulzugehörigkeit:

- Spezialisierung Bachelor Stochastik
- Wahlmodul Bereich Angewandte Mathematik im Master Mathematik

Zufällige diskrete Strukturen und Algorithmen				A/R
Art der Vorlesung	SWS	Leistungspunkte: 10	Verantwortung	·
Bachelor und Master	4+2		Weber	
Danalaa "O'alaa 'Aa	:0:			

Regelmäßigkeit: unregelmäßig

Inhalt:

- Struktur zufälliger Permutationen und Partitionen
- binäre und ebene Bäume, Such- und Sortieralgorithmen
- zufällige Graphen

Grundlegende Literatur:

- S. Janson, T. Luczak, A. Rucinski: Random Graphs, Wiley, New York, 2000.
- R. Motwani, P. Raghavan: *Randomized Algorithms*, Cambridge University Press, Cambridge, 1995.
- J. Pitman: *Combinatorial Stochastic Processes*, Lecture Notes in Mathematics. Springer, New York, 2006.

Empfohlene Vorkenntnisse: Mathematische Stochastik I und II

- Spezialisierung Bachelor Stochastik
- Wahlmodul Bereich Angewandte Mathematik im Master Mathematik

Zeitreihenanalyse				Α
Art der Vorlesung	SWS	Leistungspunkte:	Verantwortung	
Bachelor und Master	2+1	5	IfMS	
Regelmäßigkeit: unregelmäßig				

- stationäre Zeitreihen
- Autokovarianzfunktion und Spektralmaß
- autoregressive Prozesse, Moving-Average-Prozesse
- Spektraldarstellung
- Kolmogorovsche Vorhersagetheorie
- Statistik im Zeitbereich (Schätzer für Erwartungswert- und Autokovarianzfunktion)
- Statistik im Frequenzbereich (Periodogramm, Spektraldichteschätzer)

Grundlegende Literatur:

☐ J.-P. Kreiß, G. Neuhaus: *Einführung in die Zeitreihenanalyse*, Springer, Berlin, 2006.

Empfohlene Vorkenntnisse: Mathematische Stochastik II

- Spezialisierung Bachelor Stochastik
- Wahlmodul Bereich Angewandte Mathematik im Master Mathematik